Noise-adaptive shape reconstruction from raw point sets

We propose a noise‐adaptive shape reconstruction method specialized to smooth, closed shapes. Our algorithm takes as input a defect‐laden point set with variable noise and outliers, and comprises three main steps. First, we compute a novel noise‐adaptive distance function to the inferred shape, which relies on the assumption that the inferred shape is a smooth submanifold of known dimension. Second, we estimate the sign and confidence of the function at a set of seed points, through minimizing a quadratic energy expressed on the edges of a uniform random graph. Third, we compute a signed implicit function through a random walker approach with soft constraints chosen as the most confident seed points computed in previous step.

[1]  Yuqing Song,et al.  Boundary fitting for 2D curve reconstruction , 2010, The Visual Computer.

[2]  Pascal Barla,et al.  Growing Least Squares for the Analysis of Manifolds in Scale‐Space , 2012, Comput. Graph. Forum.

[3]  Cohen-OrDaniel,et al.  ℓ1-Sparse reconstruction of sharp point set surfaces , 2010 .

[4]  Daniel Cohen-Or,et al.  ℓ1-Sparse reconstruction of sharp point set surfaces , 2010, TOGS.

[5]  Ghassan Hamarneh,et al.  VASE: Volume‐Aware Surface Evolution for Surface Reconstruction from Incomplete Point Clouds , 2011, Comput. Graph. Forum.

[6]  Martial Hebert,et al.  Scale Selection for Geometric Fitting in Noisy Point Clouds , 2010, Int. J. Comput. Geom. Appl..

[7]  Laurent Rineau,et al.  A generic software design for Delaunay refinement meshing , 2007, Comput. Geom..

[8]  Nina Amenta,et al.  The Domain of a Point Set Surface , 2004, PBG.

[9]  Cláudio T. Silva,et al.  Medial Kernels , 2012, Comput. Graph. Forum.

[10]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2006, Comput. Geom..

[12]  James F. O'Brien,et al.  Spectral surface reconstruction from noisy point clouds , 2004, SGP '04.

[13]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[14]  Shahram Izadi,et al.  Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[15]  Pascal Barla,et al.  Growing Least Squares for the Continuous Analysis of Manifolds in Scale-Space , 2012 .

[16]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2004, SCG '04.

[17]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[18]  Ariel Shamir,et al.  Cone carving for surface reconstruction , 2010, SIGGRAPH 2010.

[19]  Hao Wang,et al.  Bandwidth Selection and Reconstruction Quality in Point-Based Surfaces , 2009, IEEE Transactions on Visualization and Computer Graphics.

[20]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[21]  Julie Digne Inverse geometry : from the raw point cloud to the 3D Surface : theory and algorithms. (Géométrie inverse : du nuage de points brut à la surface 3D : théorie et algorithmes) , 2010 .

[22]  S. Sotoodeh OUTLIER DETECTION IN LASER SCANNER POINT CLOUDS , 2006 .

[23]  Pierre Alliez,et al.  Signing the Unsigned: Robust Surface Reconstruction from Raw Pointsets , 2010, Comput. Graph. Forum.

[24]  Daniel Cohen-Or,et al.  Cone carving for surface reconstruction , 2010, ACM Trans. Graph..