Fourier pseudo-spectral method for the extended Fisher-Kolmogorov equation in two dimensions

In the study of pattern formation in bi-stable systems, the extended Fisher-Kolmogorov (EFK) equation plays an important role. In this paper, a Fourier pseudo-spectral method for solving the EFK equation in two space dimensions is presented. Prior bounds are proved using Lyapunov function. Further, optimal error estimates are established for the semi-discrete scheme. Finally, a fully discrete scheme based on Crank-Nicolson method is proposed, and related optimal error estimates are derived and some numerical experiments are presented.

[1]  A. K. Pani,et al.  Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation , 2005 .

[2]  Thirupathi Gudi,et al.  A fully discrete C0 interior penalty Galerkin approximation of the extended Fisher-Kolmogorov equation , 2013, J. Comput. Appl. Math..

[3]  P. Coullet,et al.  Nature of spatial chaos. , 1987, Physical review letters.

[4]  Joseph Oliger,et al.  Stability of the Fourier method , 1977 .

[5]  G. Adomian Fisher-Kolmogorov equation , 1995 .

[6]  A. K. Pani,et al.  Numerical methods for the extended Fisher-Kolmogorov (EFK) equation , 2006 .

[7]  W. van Saarloos,et al.  Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection. , 1988, Physical review. A, General physics.

[8]  Alfio Quarteroni,et al.  Fourier spectral methods for pseudo-parabolic equations , 1987 .

[9]  Francesco Petruccione,et al.  Fluctuation effects on wave propagation in a reaction-diffusion process , 1994 .

[10]  Xingde Ye,et al.  The Fourier spectral method for the Cahn-Hilliard equation , 2005, Appl. Math. Comput..

[11]  Guozhen Zhu,et al.  Experiments on Director Waves in Nematic Liquid Crystals , 1982 .

[12]  Dee Gt,et al.  Bistable systems with propagating fronts leading to pattern formation. , 1988 .

[13]  Wim van Saarloos Dynamical velocity selection: Marginal stability. , 1987 .

[14]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[15]  Khaled Omrani,et al.  Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions , 2011, Comput. Math. Appl..

[16]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[17]  S. Shtrikman,et al.  Critical Behavior at the Onset of k --> -Space Instability on the lamda Line , 1975 .