Non-linear Covariance Estimation for Reconstructing Neural Activity with MEG/EEG Data
暂无分享,去创建一个
Jesús Francisco Vargas-Bonilla | Germán Castellanos-Domínguez | Leonardo Duque-Muñoz | José David López | Juan David Martínez-Vargas | J. Vargas-Bonilla | L. Duque-Muñoz | G. Castellanos-Domínguez | J. D. Martínez-Vargas | J. López
[1] A. Dale,et al. Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.
[2] G. Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV , 1999 .
[3] A. Dale,et al. Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.
[4] Alexandre Gramfort,et al. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals , 2015, NeuroImage.
[5] Andrés Marino Álvarez-Meza,et al. Unsupervised Kernel Function Building Using Maximization of Information Potential Variability , 2014, CIARP.
[6] Enea F Pavone,et al. Acute modulation of cortical oscillatory activities during short trains of high‐frequency repetitive transcranial magnetic stimulation of the human motor cortex: A combined EEG and TMS study , 2008, Human brain mapping.
[7] R D Pascual-Marqui,et al. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.
[8] Lluís A. Belanche Muñoz,et al. Developments in kernel design , 2013, ESANN.
[9] Karl J. Friston,et al. Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.
[10] Jin Fan,et al. Cognitive Control in Majority Search: A Computational Modeling Approach , 2011, Front. Hum. Neurosci..
[11] Karl J. Friston,et al. A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration , 2011, Front. Hum. Neurosci..
[12] Karl J. Friston,et al. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM , 2014, NeuroImage.
[13] Hubert Preissl,et al. Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches , 2012, PloS one.
[14] Emery N. Brown,et al. A Subspace Pursuit-based Iterative Greedy Hierarchical solution to the neuromagnetic inverse problem , 2013, NeuroImage.
[15] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2003, ICTAI.
[16] Stefan Haufe,et al. A Simulation Framework for Benchmarking EEG-Based Brain Connectivity Estimation Methodologies , 2016, Brain Topography.
[17] Richard M. Leahy,et al. Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..
[18] Bart Vanrumste,et al. Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .
[19] Yu Huang,et al. The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting , 2015, NeuroImage.
[20] Karl J. Friston,et al. MEG and EEG data fusion: Simultaneous localisation of face-evoked responses , 2009, NeuroImage.
[21] Thomas Gärtner,et al. A survey of kernels for structured data , 2003, SKDD.