Adversarial Search by Evolutionary Computation

In this paper, we consider the problem of finding good next moves in two-player games. Traditional search algorithms, such as minimax and - pruning, suffer great temporal and spatial expansion when exploring deeply into search trees to find better next moves. The evolution of genetic algorithms with the ability to find global or near global optima in limited time seems promising, but they are inept at finding compound optima, such as the minimax in a game-search tree. We thus propose a new genetic algorithm-based approach that can find a good next move by reserving the board evaluation values of new offspring in a partial game-search tree. Experiments show that solution accuracy and search speed are greatly improved by our algorithm.

[1]  Hermann Kaindl,et al.  Minimaxing: Theory and Practice , 1988, AI Mag..

[2]  K. De Jong Adaptive System Design: A Genetic Approach , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  David Mutchler The Multi-Player Version of Minimax Displays Game-Tree Pathology , 1993, Artif. Intell..

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  Bruce Abramson,et al.  Control strategies for two-player games , 1989, CSUR.

[6]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[7]  Tzung-Pei Hong,et al.  Automatically integrating multiple rule sets in a distributed-knowledge environment , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[8]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[9]  David J. Slate,et al.  Chess 4.5-The Northwestern University chess program , 1988 .

[10]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[11]  Gilles Brassard,et al.  Fundamentals of Algorithmics , 1995 .

[12]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[13]  Bruce Abramson,et al.  On learning and testing evaluation functions , 1990, J. Exp. Theor. Artif. Intell..

[14]  Paul S. Rosenbloom,et al.  A World-Championship-Level Othello Program , 1982, Artif. Intell..

[15]  Bruce W. Ballard,et al.  The *-Minimax Search Procedure for Trees Containing Chance Nodes , 1983, Artif. Intell..

[16]  A. V. Uskov,et al.  Programming a computer to play chess , 1970 .

[17]  Kai-Fu Lee,et al.  The Development of a World Class Othello Program , 1990, Artif. Intell..

[18]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[19]  Richard E. Korf Multi-Player Alpha-Beta Pruning , 1991, Artif. Intell..

[20]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[21]  Ronald L. Rivest,et al.  Game Tree Searching by Min/Max Approximation , 1987, Artif. Intell..

[22]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[23]  T. Anthony Marsland,et al.  A Comparison of Minimax Tree Search Algorithms , 1983, Artif. Intell..

[24]  Ludmila I. Kuncheva,et al.  Genetic Algorithm for Feature Selection for Parallel Classifiers , 1993, Inf. Process. Lett..

[25]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[27]  Jürg Nievergelt Information content of chess positions , 1977, SGAR.

[28]  Paul R. Cohen,et al.  Handbook of AI , 1986 .

[29]  Judea Pearl,et al.  A Minimax Algorithm Better Than Alpha-Beta? Yes and No , 1983, Artif. Intell..

[30]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[31]  Jacques Pitrat,et al.  A Chess Combination Program Which Uses Plans , 1977, Artif. Intell..

[32]  Leonard Bolc,et al.  Search methods for artificial intelligence , 1992 .