A variational free energy minimization interpretation of multiuser detection in CDMA

We propose a unified approach for deriving and studying multiuser detection algorithms using the concept of variational free energy minimization. Under this generalized framework, we readily arrive at many popular multiuser detection schemes. In addition to its systematic appeal, there are several other advantages of this viewpoint. First of all, by condensing the design of multiuser detectors into the selection of a few key probability distributions, namely p(b), p(r|b) and Q(b), we provide rigorous justifications for numerous detectors that were proposed on heuristic grounds and recommend new and improved designs. Furthermore, the free energy formulation facilitates convenient joint detection and decoding (utilizing the turbo principle) when error-control codes are incorporated, as well as efficient parameter estimation via the variational expectation maximization (EM) algorithm.

[1]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[2]  J. Boutros,et al.  Iterative multiuser joint decoding: unified framework and asymptotic analysis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[3]  Thomas Fabricius,et al.  Approximations to joint-ML and ML symbol-channel estimators in MUD CDMA , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[4]  Lars K. Rasmussen,et al.  Constrained maximum-likelihood detection in CDMA , 2001, IEEE Trans. Commun..

[5]  Hans D. Schotten,et al.  Efficient implementation of linear multiuser detectors for asynchronous CDMA systems by linear interference cancellation , 1998, Eur. Trans. Telecommun..

[6]  Sergio Verdú,et al.  Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.

[7]  Brendan J. Frey,et al.  Advances in Algorithms for Inference and Learning in Complex Probability Models , 2003 .

[8]  Paul D. Alexander,et al.  Iterative detection in code-division multiple-access with error control coding , 1998, Eur. Trans. Telecommun..

[9]  Lars K. Rasmussen,et al.  Convex-constrained maximum-likelihood detection in CDMA , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[10]  H. Vincent Poor,et al.  Iterative (turbo) soft interference cancellation and decoding for coded CDMA , 1999, IEEE Trans. Commun..

[11]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[12]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[13]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[14]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[15]  Toshiyuki Tanaka,et al.  A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[16]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[17]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[18]  Teng Joon Lim,et al.  Constrained Maximum-Likelihood Detection , 2001 .

[19]  Lars K. Rasmussen,et al.  A matrix-algebraic approach to successive interference cancellation in CDMA , 2000, IEEE Trans. Commun..