Deconvolution of sparse spike trains by iterated window maximization

A new algorithm for deconvolution of sparse spike trains is presented. To maximize a joint MAP criterion, an initial configuration is iteratively improved through a number of small changes. Computational savings are achieved by precomputing and storing two correlation functions and by employing a window strategy. The resulting formulas are simple, intuitive, and efficient. In addition, they allow much more complicated transitions than state-space solutions such as Kormylo and Mendel's (1982) single most likely replacement algorithm. This makes it possible to reduce significantly the probability that the algorithm terminates in a local maximum. Synthetic data examples are presented that support these claims.

[1]  Huibert Kwakernaak Estimation of pulse heights and arrival times , 1980, Autom..

[2]  R. Yarlagadda,et al.  Fast Algorithms for lp Deconvolution , 1985 .

[3]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[4]  Kjetil F. Kaaresen,et al.  Efficient Maximum A Posteriori Deconvolution of Sparse Structures , 1996 .

[5]  Yves Goussard,et al.  A new algorithm for iterative deconvolution of sparse spike trains , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[6]  Jerry M. Mendel,et al.  A fast maximum-likelihood estimation and detection algorithm for Bernoulli-Gaussian processes , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Gordon Hayward,et al.  Comparison of some non-adaptive deconvolution techniques for resolution enhancement of ultrasonic data , 1989 .

[9]  Jerry M. Mendel,et al.  Maximum-likelihood deconvolution; an optimization theory perspective , 1986 .

[10]  A Herment,et al.  Range Resolution Improvement by a Fast Deconvolution Method , 1984, Ultrasonic imaging.

[11]  Frédéric Champagnat,et al.  Deconvolution of sparse spike trains accounting for wavelet phase shifts and colored noise , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[12]  Jerry M. Mendel,et al.  Viterbi algorithm detector for Bernoulli-Gaussian processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[13]  N. R. Chapman,et al.  Comparison of the L1, And L2 Norms Applied to One-at-a-Time Spike Extraction From Seismic Traces , 1983 .

[14]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[15]  Yves Goussard,et al.  Recursive deconvolution of Bernoulli-Gaussian processes using a MA representation , 1989 .

[16]  H. Joel Trussell,et al.  Seismic deconvolution by multipulse methods , 1990, IEEE Trans. Acoust. Speech Signal Process..

[17]  Anthony N. Sinclair,et al.  Recovery of a sparse spike time series by L1 norm deconvolution , 1994, IEEE Trans. Signal Process..

[18]  Jerry M. Mendel,et al.  Improved maximum-likelihood detection and estimation of Bernoulli-Gaussian processes , 1984, IEEE Trans. Inf. Theory.

[19]  Bishnu S. Atal,et al.  A new model of LPC excitation for producing natural-sounding speech at low bit rates , 1982, ICASSP.

[20]  Jerry M. Mendel,et al.  A fast prediction-error detector for estimating sparse-spike sequences , 1989 .

[21]  Jerry M. Mendel,et al.  Maximum likelihood detection and estimation of Bernoulli - Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[22]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[23]  N. R. Chapman,et al.  Comparison of the l 1 and l 2 norms applied to one-at-a-time spike extraction from seismic traces , 1984 .

[24]  Jerry M. Mendel,et al.  Single-channel white-noise estimators for deconvolution , 1978 .

[25]  J. Bee Bednar,et al.  Fast algorithms for lpdeconvolution , 1985, IEEE Trans. Acoust. Speech Signal Process..

[26]  J. Mendel,et al.  Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing , 1990 .

[27]  Kjetil F. Kaaresen,et al.  Maximum A Posteriori Deconvolution of Sparse Spike Trains , 1996 .

[28]  Julian Besag,et al.  Digital Image Processing: Towards Bayesian image analysis , 1989 .

[29]  Marc Lavielle,et al.  Bayesian deconvolution of Bernoulli-Gaussian processes , 1993, Signal Process..