System T and the Product of Selection Functions

We show that the finite product of selection functions (for all finite types) is primitive recursively equivalent to Goedel's higher-type recursor (for all finite types). The correspondence is shown to hold for similar restricted fragments of both systems: The recursor for type level n+1 is primitive recursively equivalent to the finite product of selection functions of type level n. Whereas the recursor directly interprets induction, we show that other classical arithmetical principles such as bounded collection and finite choice are more naturally interpreted via the product of selection functions.

[1]  Wilfried Sieg,et al.  Fragments of arithmetic , 1985, Ann. Pure Appl. Log..

[2]  Martín Hötzel Escardó,et al.  Selection functions, bar recursion and backward induction , 2010, Mathematical Structures in Computer Science.

[3]  J. Paris,et al.  ∑n-Collection Schemas in Arithmetic , 1978 .

[4]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[5]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[6]  Martín Hötzel Escardó,et al.  Computational Interpretations of Analysis via Products of Selection Functions , 2010, CiE.

[7]  Paulo Oliva,et al.  Sequential games and optimal strategies , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Jeff B. Paris On models of arithmetic , 1972 .

[9]  Martín Hötzel Escardó,et al.  The Peirce Translation and the Double Negation Shift , 2010, CiE.

[10]  S. Buss Handbook of proof theory , 1998 .

[11]  C. Spector Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .

[12]  C. Parsons On a Number Theoretic Choice Schema and its Relation to Induction , 1970 .

[13]  S. Kuroda Intuitionistische Untersuchungen der formalistischen Logik , 1951, Nagoya Mathematical Journal.

[14]  Charles D. Parsons,et al.  On n-quantifier induction , 1972, Journal of Symbolic Logic.

[15]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.