Error resilience performance evaluation of H.264 I-frame and JPWL for wireless image transmission

The visual quality obtained in wireless transmission strongly depends on the characteristics of the wireless channel and on the error resilience of the source coding. The wireless extensions of the JPEG 2000 standard (JPWL) and H.264 are the latest international standards for still image and video compression, respectively. However, few results have been reported to compare the rate-distortion (R-D) performance of JPEG 2000 and H.264. Conversely, comparative studies of error resilience between JPWL and H.264 for wireless still image transmission have not been thoroughly investigated. In this paper, we analyse the error resilience of image coding based on JPWL and H.264 I-frame coding in Rayleigh fading channels. Comprehensive objective and perceptual results are presented in relation to the error resilience performance of these two standards under various conditions. Our simulation results reveal that H.264 is more robust to transmission errors than JPWL for wireless still image transmission.

[1]  Soon-kak Kwon,et al.  Overview of H.264/MPEG-4 part 10 , 2006, J. Vis. Commun. Image Represent..

[2]  Trac D. Tran,et al.  Performance comparison of leading image codecs: H.264/AVC Intra, JPEG2000, and Microsoft HD Photo , 2007, SPIE Optical Engineering + Applications.

[3]  K. R. Rao,et al.  An overview of H.264/MPEG-4 Part 10 , 2003, Proceedings EC-VIP-MC 2003. 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications (IEEE Cat. No.03EX667).

[4]  Touradj Ebrahimi,et al.  Error-resilient video coding performance analysis of motion JPEG2000 and MPEG-4 , 2004, IS&T/SPIE Electronic Imaging.

[5]  Touradj Ebrahimi,et al.  The JPEG 2000 still image compression standard , 2001, IEEE Signal Process. Mag..

[6]  Sethuraman Panchanathan,et al.  Error resiliency schemes in H.264/AVC standard , 2006, J. Vis. Commun. Image Represent..

[7]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[8]  Homer H. Chen,et al.  Error-resilient coding in JPEG-2000 and MPEG-4 , 2000, IEEE Journal on Selected Areas in Communications.

[9]  Gregory E. Bottomley,et al.  Jakes fading model revisited , 1993 .

[10]  Ying Chen,et al.  Error Resilient Coding and Error Concealment in Scalable Video Coding , 2009 .

[11]  Mourad Ouaret,et al.  On comparing JPEG2000 and intraframe AVC , 2006, SPIE Optics + Photonics.

[12]  Wesley De Neve,et al.  Flexible macroblock ordering in H.264/AVC , 2006, J. Vis. Commun. Image Represent..

[13]  Zoran Bojkovic,et al.  Image quality evaluation: JPEG 2000 versus intra-only H.264/AVC High Profile , 2007 .

[14]  Wei Xiang,et al.  Error resilience analysis of wireless image transmission using JPEG, JPEG 2000 and JPWL , 2009, 2009 7th International Conference on Information, Communications and Signal Processing (ICICS).

[15]  Stephan Wenger,et al.  H.264/AVC over IP , 2003, IEEE Trans. Circuits Syst. Video Technol..

[16]  Detlev Marpe,et al.  Performance evaluation of Motion-JPEG2000 in comparison with H.264/AVC operated in pure intracoding mode , 2004, SPIE Optics East.

[17]  Frédéric Dufaux,et al.  JPWL - an extension of JPEG 2000 for wireless imaging , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[18]  Runhai Jiao Performance Comparison Between AVC I-Frame Coding and JPEG2000 , 2010, 2010 Second International Conference on Computer Modeling and Simulation.

[19]  S. Marchevsky,et al.  Error resilience tools in the MPEG-4 and H.264 video coding standards , 2008, 2008 18th International Conference Radioelektronika.

[20]  Chao Xu,et al.  Comparison between JPEG2000 and H.264 for digital cinema , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[21]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[22]  Yi Guo,et al.  Error Resilient Coding and Error Concealment in Scalable Video Coding , 2009, IEEE Transactions on Circuits and Systems for Video Technology.