Brain tumor stem cells: Molecular characteristics and their impact on therapy.

[1]  M. Okada,et al.  Resveratrol promotes proteasome-dependent degradation of Nanog via p53 activation and induces differentiation of glioma stem cells. , 2013, Stem cell research.

[2]  C. Hawkins,et al.  FoxG1 Interacts with Bmi1 to Regulate Self‐Renewal and Tumorigenicity of Medulloblastoma Stem Cells , 2013, Stem cells.

[3]  M. Junier,et al.  Tumorigenic Potential of miR‐18A* in Glioma Initiating Cells Requires NOTCH‐1 Signaling , 2013, Stem cells.

[4]  S. Beck,et al.  The good, the bad and the ugly: Epigenetic mechanisms in glioblastoma , 2013, Molecular aspects of medicine.

[5]  H. Colman,et al.  Epigenetic regulation of CD133/PROM1 expression in glioma stem cells by Sp1/myc and promoter methylation , 2013, Oncogene.

[6]  A. Shiras,et al.  Wnt3a mediated activation of Wnt/β-catenin signaling promotes tumor progression in glioblastoma , 2013, Molecular and Cellular Neuroscience.

[7]  F. Herrera,et al.  Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells , 2013, British Journal of Cancer.

[8]  Z. Qin,et al.  NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro , 2013, Acta Pharmacologica Sinica.

[9]  Y. Liu,et al.  Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells , 2013, Proceedings of the National Academy of Sciences.

[10]  O. Sampetrean,et al.  IGF1 Receptor Signaling Regulates Adaptive Radioprotection in Glioma Stem Cells , 2013, Stem cells.

[11]  B. Bernstein,et al.  Epigenetic Reprogramming in Cancer , 2013, Science.

[12]  R. McLendon,et al.  Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth , 2013, Cell.

[13]  Paul Bertone,et al.  Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. , 2013, Genes & development.

[14]  Xiangrong Chen,et al.  ADAM17 regulates self-renewal and differentiation of U87 glioblastoma stem cells , 2013, Neuroscience Letters.

[15]  K. Plath,et al.  Epigenetics of Reprogramming to Induced Pluripotency , 2013, Cell.

[16]  E. Schröck,et al.  Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells , 2013, Brain : a journal of neurology.

[17]  Zachary D. Smith,et al.  DNA methylation: roles in mammalian development , 2013, Nature Reviews Genetics.

[18]  A. Pagenstecher,et al.  Akt and c-Myc Induce Stem-Cell Markers in Mature Primary p53−/− Astrocytes and Render These Cells Gliomagenic in the Brain of Immunocompetent Mice , 2013, PloS one.

[19]  H. Duffau,et al.  Cell death and neuronal differentiation of glioblastoma stem‐like cells induced by neurogenic transcription factors , 2013, Glia.

[20]  Ian Krop,et al.  Preclinical and Clinical Studies of Gamma Secretase Inhibitors with Docetaxel on Human Breast Tumors , 2013, Clinical Cancer Research.

[21]  E. Stupka,et al.  Epigenetic Regulation of Survivin by Bmi1 Is Cell Type Specific During Corticogenesis and in Gliomas , 2013, Stem cells.

[22]  P. Lichter,et al.  LGR5 is a Marker of Poor Prognosis in Glioblastoma and is Required for Survival of Brain Cancer Stem‐Like Cells , 2013, Brain pathology.

[23]  T. Crook,et al.  Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma , 2013, Cell Death and Disease.

[24]  D. Louis,et al.  Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? , 2013, Nature Reviews Clinical Oncology.

[25]  J. Ho,et al.  A tumorigenic MLL-homeobox network in human glioblastoma stem cells. , 2013, Cancer research.

[26]  P. Selviaridis,et al.  DARPP32, STAT5 and STAT3 mRNA Expression Ratios in Glioblastomas are Associated with Patient Outcome , 2012, Pathology & Oncology Research.

[27]  T. Veenstra,et al.  Histone Demethylase Jumonji D3 (JMJD3) as a Tumor Suppressor by Regulating p53 Protein Nuclear Stabilization , 2012, PloS one.

[28]  Luciana Romão,et al.  Glioblastoma: therapeutic challenges, what lies ahead. , 2012, Biochimica et biophysica acta.

[29]  Suyun Huang,et al.  FoxM1 and Wnt/β-catenin signaling in glioma stem cells. , 2012, Cancer research.

[30]  S. Asuthkar,et al.  Epigenetic Regulation of miRNA-211 by MMP-9 Governs Glioma Cell Apoptosis, Chemosensitivity and Radiosensitivity , 2012, Oncotarget.

[31]  Jeanne F. Loring,et al.  The functions of microRNAs in pluripotency and reprogramming , 2012, Nature Cell Biology.

[32]  R. McLendon,et al.  Laminin alpha 2 enables glioblastoma stem cell growth , 2012, Annals of neurology.

[33]  Y. Suh,et al.  c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells , 2012, Oncogene.

[34]  Atique U. Ahmed,et al.  The art of gene therapy for glioma: a review of the challenging road to the bedside , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[35]  E. Arenas,et al.  WNT/β-catenin pathway activation in Myc immortalised cerebellar progenitor cells inhibits neuronal differentiation and generates tumours resembling medulloblastoma , 2012, British Journal of Cancer.

[36]  G. Reifenberger,et al.  Potential Canonical Wnt Pathway Activation in High-Grade Astrocytomas , 2012, TheScientificWorldJournal.

[37]  Y. Kondo,et al.  Contribution of MicroRNA-1275 to Claudin11 Protein Suppression via a Polycomb-mediated Silencing Mechanism in Human Glioma Stem-like Cells* , 2012, The Journal of Biological Chemistry.

[38]  G. Konopka,et al.  STAT3-iNOS Signaling Mediates EGFRvIII-Induced Glial Proliferation and Transformation , 2012, The Journal of Neuroscience.

[39]  V. Chekhonin,et al.  Contribution of microRNAs to radio- and chemoresistance of brain tumors and their therapeutic potential. , 2012, European journal of pharmacology.

[40]  F. Kirchhoff,et al.  Constitutive Notch2 signaling in neural stem cells promotes tumorigenic features and astroglial lineage entry , 2012, Cell Death and Disease.

[41]  D. Nam,et al.  Interferon regulatory factor 7 regulates glioma stem cells via interleukin-6 and Notch signalling. , 2012, Brain : a journal of neurology.

[42]  Do-Hyun Nam,et al.  Wnt activation is implicated in glioblastoma radioresistance , 2012, Laboratory Investigation.

[43]  Yang-Hsin Shih,et al.  Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. , 2012, Biomaterials.

[44]  Gang Lu,et al.  Loss of Brain-enriched miR-124 MicroRNA Enhances Stem-like Traits and Invasiveness of Glioma Cells* , 2012, The Journal of Biological Chemistry.

[45]  Lindy E. Barrett,et al.  Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. , 2012, Cancer cell.

[46]  X. Wang,et al.  Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells , 2012, Oncogene.

[47]  K. Ligon,et al.  Neoplastic cells are a rare component in human glioblastoma microvasculature , 2012, Oncotarget.

[48]  Y. You,et al.  MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. , 2011, International journal of oncology.

[49]  A. Sloan,et al.  Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential , 2011, Cell Death and Differentiation.

[50]  O. Slabý,et al.  MicroRNAs and Glioblastoma , 2012 .

[51]  J. Uhm IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012 .

[52]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth after chemotherapy , 2012 .

[53]  Anindya Dutta,et al.  The role of microRNAs in glioma initiation and progression. , 2012, Frontiers in bioscience.

[54]  J. Fueyo,et al.  Targeting brain tumor stem cells with oncolytic adenoviruses. , 2012, Methods in molecular biology.

[55]  K. Aldape,et al.  Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway , 2012, Journal of Neuro-Oncology.

[56]  Ganesh Rao,et al.  The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. , 2011, Genes & development.

[57]  Wenzhuo Zhuang,et al.  Induction of autophagy promotes differentiation of glioma‐initiating cells and their radiosensitivity , 2011, International journal of cancer.

[58]  J. Huse,et al.  Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. , 2011, Cancer research.

[59]  W. Yung,et al.  FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. , 2011, Cancer cell.

[60]  K. Miyazono,et al.  Glioma-initiating Cells Retain Their Tumorigenicity through Integration of the Sox Axis and Oct4 Protein* , 2011, The Journal of Biological Chemistry.

[61]  A. Hao,et al.  Expression profile of embryonic stem cell‐associated genes Oct4, Sox2 and Nanog in human gliomas , 2011, Histopathology.

[62]  M. Nistér,et al.  Identification of a SOX2-dependent subset of tumor- and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity profile , 2011, Neuro-oncology.

[63]  A. Harris,et al.  DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. , 2011, Cancer research.

[64]  C. Niu,et al.  Expression of NANOG in human gliomas and its relationship with undifferentiated glioma cells. , 2011, Oncology reports.

[65]  T. Mikkelsen,et al.  Cilengitide induces autophagy-mediated cell death in glioma cells. , 2011, Neuro-oncology.

[66]  William A. Flavahan,et al.  Glioma stem cell maintenance: the role of the microenvironment. , 2011, Current pharmaceutical design.

[67]  P. González-Gómez,et al.  MicroRNAs as Regulators of Neural Stem Cell-Related Pathways in Glioblastoma Multiforme , 2011, Molecular Neurobiology.

[68]  Jie Mei,et al.  MicroRNA-146a Inhibits Glioma Development by Targeting Notch1 , 2011, Molecular and Cellular Biology.

[69]  Ming Yan,et al.  Overexpression of ZNF217 in glioblastoma contributes to the maintenance of glioma stem cells regulated by hypoxia-inducible factors , 2011, Laboratory Investigation.

[70]  M. Cleary,et al.  HIF induces human embryonic stem cell markers in cancer cells. , 2011, Cancer research.

[71]  Hye-Min Jeon,et al.  ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. , 2011, Cancer research.

[72]  R. McLendon,et al.  Acidic stress promotes a glioma stem cell phenotype , 2011, Cell Death and Differentiation.

[73]  C. Miracco,et al.  β-catenin and Gli1 are prognostic markers in glioblastoma , 2011, Cancer biology & therapy.

[74]  D. Nam,et al.  Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation. , 2011, Cancer research.

[75]  R. McLendon,et al.  Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. , 2011, Cancer cell.

[76]  K. Arita,et al.  Role of sonic hedgehog signaling in migration of cell lines established from CD133-positive malignant glioma cells , 2011, Journal of Neuro-Oncology.

[77]  Qiulian Wu,et al.  L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1 , 2011, The EMBO journal.

[78]  Kylie M. Price,et al.  Side Population is Not Necessary or Sufficient for a Cancer Stem Cell Phenotype in Glioblastoma Multiforme , 2011, Stem cells.

[79]  Y. Pu,et al.  Bone morphogenetic protein 4 inhibits cell proliferation and induces apoptosis in glioma stem cells. , 2011, Cancer biotherapy & radiopharmaceuticals.

[80]  Loic Deleyrolle,et al.  The Cancer Stem Cell Hypothesis: Failures and Pitfalls , 2011, Neurosurgery.

[81]  S. Pastorino,et al.  Transdifferentiation of glioblastoma cells into vascular endothelial cells , 2011, Proceedings of the National Academy of Sciences.

[82]  G. Fuller,et al.  Hypoxia Potentiates Glioma-Mediated Immunosuppression , 2011, PloS one.

[83]  L. Ricci-Vitiani,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[84]  A. Sonabend,et al.  Inhibition of Sonic Hedgehog and Notch Pathways Enhances Sensitivity of CD133+ Glioma Stem Cells to Temozolomide Therapy , 2011, Molecular medicine.

[85]  J. Baselga,et al.  TGF-β Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma. , 2010, Cancer cell.

[86]  Rong Wang,et al.  Glioblastoma stem-like cells give rise to tumour endothelium , 2010, Nature.

[87]  R. Reis,et al.  MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. , 2010, Cancer research.

[88]  A. Merlo,et al.  Notch signaling in glioblastoma: a developmental drug target? , 2010, BMC medicine.

[89]  A. Heimberger,et al.  Glioma cancer stem cells induce immunosuppressive macrophages/microglia. , 2010, Neuro-oncology.

[90]  J. Rich,et al.  Potential therapeutic implications of cancer stem cells in glioblastoma. , 2010, Biochemical pharmacology.

[91]  C. Eberhart,et al.  Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. , 2010, The American journal of pathology.

[92]  A. Ross,et al.  Cancer esearch apeutics , Targets , and Chemical Biology ecretase Inhibitors Enhance Temozolomide Treatment uman Gliomas by Inhibiting Neurosphere R opulation and Xenograft Recurrence , 2010 .

[93]  A. Ruiz i Altaba,et al.  NANOG regulates glioma stem cells and is essential in vivo acting in a cross‐functional network with GLI1 and p53 , 2010, The EMBO journal.

[94]  Qiulian Wu,et al.  Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting , 2010, Protein & Cell.

[95]  G. Bernier,et al.  BMI1 Confers Radioresistance to Normal and Cancerous Neural Stem Cells through Recruitment of the DNA Damage Response Machinery , 2010, The Journal of Neuroscience.

[96]  J. Angelastro,et al.  Overexpression of CD133 Promotes Drug Resistance in C6 Glioma Cells , 2010, Molecular Cancer Research.

[97]  Yuanyan Wei,et al.  Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. , 2010, Biochemical and biophysical research communications.

[98]  J. Fueyo,et al.  Eradication of brain tumor stem cells with an oncolytic adenovirus. , 2010, Discovery medicine.

[99]  Thomas Benner,et al.  Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[100]  M. Grady,et al.  The Relationship among Hypoxia, Proliferation, and Outcome in Patients with De Novo Glioblastoma: A Pilot Study. , 2010, Translational oncology.

[101]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[102]  R. McLendon,et al.  Integrin alpha 6 regulates glioblastoma stem cells. , 2010, Cell stem cell.

[103]  R. Scienza,et al.  Intratumoral Hypoxic Gradient Drives Stem Cells Distribution and MGMT Expression in Glioblastoma , 2010, Stem cells.

[104]  M. Wolter,et al.  A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. , 2010, Brain : a journal of neurology.

[105]  Yunqing Li,et al.  microRNA-34a is tumor suppressive in brain tumors and glioma stem cells , 2010, Cell cycle.

[106]  E. Chiocca,et al.  MicroRNAs and glioblastoma; the stem cell connection , 2010, Cell Death and Differentiation.

[107]  J. Tonn,et al.  Presence of pluripotent CD133+ cells correlates with malignancy of gliomas , 2010, Molecular and Cellular Neuroscience.

[108]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[109]  D. Figarella-Branger,et al.  A2B5 Cells from Human Glioblastoma have Cancer Stem Cell Properties , 2010, Brain pathology.

[110]  H. Colman,et al.  Glioblastoma Cancer-Initiating Cells Inhibit T-Cell Proliferation and Effector Responses by the Signal Transducers and Activators of Transcription 3 Pathway , 2010, Molecular Cancer Therapeutics.

[111]  B. Sullenger,et al.  Notch Promotes Radioresistance of Glioma Stem Cells , 2009, Stem cells.

[112]  Guido Nikkhah,et al.  NOTCH Pathway Blockade Depletes CD133‐Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts , 2009, Stem cells.

[113]  R. Arceci Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma , 2010 .

[114]  R. McLendon,et al.  Erythropoietin Receptor Signaling Through STAT3 Is Required For Glioma Stem Cell Maintenance. , 2010, Genes & cancer.

[115]  Nicolò Riggi,et al.  EZH2 is essential for glioblastoma cancer stem cell maintenance. , 2009, Cancer research.

[116]  Jeremy Stinson,et al.  Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. , 2009, The New England journal of medicine.

[117]  J. Engh,et al.  Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α , 2009, Oncogene.

[118]  K. Miyazono,et al.  Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. , 2009, Cell stem cell.

[119]  Seung-Up Kim,et al.  Induction of oligodendrogenesis in glioblastoma-initiating cells by IFN-mediated activation of STAT3 signaling. , 2009, Cancer letters.

[120]  R. McLendon,et al.  The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype , 2009, Cell cycle.

[121]  Justin C. Grindley,et al.  Tumour-initiating cells: challenges and opportunities for anticancer drug discovery , 2009, Nature Reviews Drug Discovery.

[122]  R. McLendon,et al.  Targeting Interleukin 6 Signaling Suppresses Glioma Stem Cell Survival and Tumor Growth , 2009, Stem cells.

[123]  F. Lang,et al.  Oncolytic adenovirus: preclinical and clinical studies in patients with human malignant gliomas. , 2009, Current gene therapy.

[124]  R. Kerbel,et al.  Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. , 2009, Cancer research.

[125]  S. Morrison,et al.  Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution , 2009, Cell.

[126]  T. Ichisaka,et al.  Hypoxia enhances the generation of induced pluripotent stem cells. , 2009, Cell stem cell.

[127]  Jeffrey M. Rosen,et al.  Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features , 2009, Proceedings of the National Academy of Sciences.

[128]  Michael F Clarke,et al.  DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. , 2009, Cell stem cell.

[129]  T. Mikkelsen,et al.  The induction of autophagy by γ‐radiation contributes to the radioresistance of glioma stem cells , 2009, International journal of cancer.

[130]  D. Bigner,et al.  Glioblastoma multiforme: a review of where we have been and where we are going , 2009, Expert opinion on investigational drugs.

[131]  G. Bernier,et al.  BMI1 Sustains Human Glioblastoma Multiforme Stem Cell Renewal , 2009, The Journal of Neuroscience.

[132]  Alfredo Quinones-Hinojosa,et al.  DNER, an Epigenetically Modulated Gene, Regulates Glioblastoma‐Derived Neurosphere Cell Differentiation and Tumor Propagation , 2009, Stem cells.

[133]  P. Siesjö,et al.  CD133+ and nestin+ tumor‐initiating cells dominate in N29 and N32 experimental gliomas , 2009, International journal of cancer.

[134]  Jeffrey M. Rosen,et al.  The Increasing Complexity of the Cancer Stem Cell Paradigm , 2009, Science.

[135]  Hui Wang,et al.  Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. , 2009, Cancer cell.

[136]  K. Graham,et al.  Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. , 2009, Cancer research.

[137]  A. Bonni,et al.  STAT3 regulation of glioblastoma pathogenesis. , 2009, Current molecular medicine.

[138]  H. Fine,et al.  SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. , 2009, Cell stem cell.

[139]  A. Hao,et al.  Oct4 is expressed in human gliomas and promotes colony formation in glioma cells , 2009, Glia.

[140]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[141]  Khalid Shah,et al.  Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. , 2009, Cancer research.

[142]  Hui Wang,et al.  Turning Cancer Stem Cells Inside Out: An Exploration of Glioma Stem Cell Signaling Pathways* , 2009, The Journal of Biological Chemistry.

[143]  Tatsuya Ozawa,et al.  PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. , 2009, Cell stem cell.

[144]  A. Poggi,et al.  Comparative Analysis of DNA Repair in Stem and Nonstem Glioma Cell Cultures , 2009, Molecular Cancer Research.

[145]  P. Febbo,et al.  Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. , 2009, Cancer cell.

[146]  G. Riggins,et al.  Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells , 2009, Molecular Cancer Therapeutics.

[147]  Paolo Malatesta,et al.  SOX2 Silencing in Glioblastoma Tumor‐Initiating Cells Causes Stop of Proliferation and Loss of Tumorigenicity , 2009, Stem cells.

[148]  Tao Song,et al.  Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients , 2008, Journal of experimental & clinical cancer research : CR.

[149]  M. Israel,et al.  Cancer stem cells are enriched in the side population cells in a mouse model of glioma. , 2008, Cancer research.

[150]  M. Mattson,et al.  Notch: from neural development to neurological disorders , 2008, Journal of neurochemistry.

[151]  Keith L Black,et al.  Hedgehog Signaling Regulates Brain Tumor‐Initiating Cell Proliferation and Portends Shorter Survival for Patients with PTEN‐Coexpressing Glioblastomas , 2008, Stem cells.

[152]  R. McLendon,et al.  Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition , 2008, Stem cells.

[153]  Hui Wang,et al.  c-Myc Is Required for Maintenance of Glioma Cancer Stem Cells , 2008, PloS one.

[154]  Agnieszka Bronisz,et al.  Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. , 2008, Cancer research.

[155]  A. Friedman,et al.  Bevacizumab Plus Irinotecan in Recurrent WHO Grade 3 Malignant Gliomas , 2008, Clinical Cancer Research.

[156]  Gerald C. Chu,et al.  P53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation , 2008, Nature.

[157]  A. Paetau,et al.  Stem cell protein BMI‐1 is an independent marker for poor prognosis in oligodendroglial tumours , 2008, Neuropathology and applied neurobiology.

[158]  Walter Birchmeier,et al.  Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. , 2008, Genes & development.

[159]  R. McLendon,et al.  Targeting cancer stem cells through L1CAM suppresses glioma growth. , 2008, Cancer research.

[160]  Young-Woo Sohn,et al.  Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling. , 2008, Genes & development.

[161]  G. Reifenberger,et al.  Temozolomide preferentially depletes cancer stem cells in glioblastoma. , 2008, Cancer research.

[162]  E. Holland,et al.  Glioma Formation, Cancer Stem Cells, and Akt Signaling , 2008, Stem Cell Reviews.

[163]  E. Domany,et al.  Stem cell-related "self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[164]  Mark W. Dewhirst,et al.  Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response , 2008, Nature Reviews Cancer.

[165]  E. Holland,et al.  Cancer stem cells and survival pathways , 2008, Cell cycle.

[166]  Susan G Hilsenbeck,et al.  Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. , 2008, Journal of the National Cancer Institute.

[167]  J. Rich The Implications of the Cancer Stem Cell Hypothesis for Neuro-Oncology and Neurology. , 2008, Future neurology.

[168]  T. Iwama,et al.  Epidermal Growth Factor Plays a Crucial Role in Mitogenic Regulation of Human Brain Tumor Stem Cells* , 2008, Journal of Biological Chemistry.

[169]  A. Harris,et al.  Regulation of CXCR4 by the Notch ligand delta-like 4 in endothelial cells. , 2008, Cancer research.

[170]  M. H. Shahi,et al.  Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma. , 2008, Oncology reports.

[171]  P. Pandolfi,et al.  PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. , 2008, Genes & development.

[172]  David E Levy,et al.  Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. , 2008, Genes & development.

[173]  Peter Canoll,et al.  Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. , 2008, Neurosurgery.

[174]  Yiting Cao,et al.  Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[175]  Yuri Kotliarov,et al.  Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. , 2008, Cancer cell.

[176]  A. Shervington,et al.  Expression of Multidrug Resistance Genes in Normal and Cancer Stem Cells , 2008, Cancer investigation.

[177]  Gerald C. Chu,et al.  Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. , 2008, Cold Spring Harbor symposia on quantitative biology.

[178]  J. Rich,et al.  Cancer stem cells in brain tumor biology. , 2008, Cold Spring Harbor symposia on quantitative biology.

[179]  Mike Tyers,et al.  Chemical genetics reveals a complex functional ground state of neural stem cells. , 2007, Nature chemical biology.

[180]  D. Wion,et al.  Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. , 2007, Cancer letters.

[181]  Wen Shi,et al.  Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. , 2007, Cancer research.

[182]  S. Kang,et al.  Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. , 2007, Stem cells and development.

[183]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[184]  O. van Tellingen,et al.  Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. , 2007, Cancer cell.

[185]  M. Todaro,et al.  Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. , 2007, Cell stem cell.

[186]  R. Gilbertson,et al.  Making a tumour's bed: glioblastoma stem cells and the vascular niche , 2007, Nature Reviews Cancer.

[187]  A. Olivi,et al.  Cyclopamine‐Mediated Hedgehog Pathway Inhibition Depletes Stem‐Like Cancer Cells in Glioblastoma , 2007, Stem cells.

[188]  N. Gaiano,et al.  Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. , 2007, Nature.

[189]  H. Colman,et al.  Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. , 2007, Journal of the National Cancer Institute.

[190]  Barbara Stecca,et al.  The Gli code: an information nexus regulating cell fate, stemness and cancer. , 2007, Trends in cell biology.

[191]  A. Hara,et al.  VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. , 2007, Biochemical and biophysical research communications.

[192]  M. K. Cooper,et al.  Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells , 2007, Oncogene.

[193]  A. Shiras,et al.  Spontaneous Transformation of Human Adult Nontumorigenic Stem Cells to Cancer Stem Cells Is Driven by Genomic Instability in a Human Model of Glioblastoma , 2007, Stem cells.

[194]  Brian Keith,et al.  Hypoxia-Inducible Factors, Stem Cells, and Cancer , 2007, Cell.

[195]  Mitchel S Berger,et al.  Contribution of Notch signaling activation to human glioblastoma multiforme. , 2007, Journal of neurosurgery.

[196]  Hongye Liu,et al.  Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma , 2007, Neuron.

[197]  Darell D. Bigner,et al.  Phase II Trial of Bevacizumab and Irinotecan in Recurrent Malignant Glioma , 2007, Clinical Cancer Research.

[198]  P. Sánchez,et al.  HEDGEHOG-GLI1 Signaling Regulates Human Glioma Growth, Cancer Stem Cell Self-Renewal, and Tumorigenicity , 2007, Current Biology.

[199]  W. Woodward,et al.  WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells , 2007, Proceedings of the National Academy of Sciences.

[200]  I. Bayazitov,et al.  A perivascular niche for brain tumor stem cells. , 2007, Cancer cell.

[201]  G. Maki,et al.  Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. , 2007, International journal of radiation oncology, biology, physics.

[202]  Tracy T Batchelor,et al.  AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. , 2007, Cancer cell.

[203]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[204]  G. Broggi,et al.  Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells , 2006, Nature.

[205]  K. Black,et al.  Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma , 2006, Molecular Cancer.

[206]  E. Holland,et al.  Notch signaling enhances nestin expression in gliomas. , 2006, Neoplasia.

[207]  F. Menghi,et al.  Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. , 2006, Cancer research.

[208]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[209]  Qiulian Wu,et al.  Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. , 2006, Cancer research.

[210]  D. Stearns,et al.  Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. , 2006, Cancer research.

[211]  Angelo L. Vescovi,et al.  Brain tumour stem cells , 2006, Nature Reviews Cancer.

[212]  O. Wiestler,et al.  Phosphatidylinositol 3′-Kinase/AKT Signaling Is Activated in Medulloblastoma Cell Proliferation and Is Associated with Reduced Expression of PTEN , 2006, Clinical Cancer Research.

[213]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[214]  T. Curran,et al.  Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[215]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[216]  J. Briscoe,et al.  The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity , 2006, Development.

[217]  H. Clevers Wnt/beta-catenin signaling in development and disease. , 2006, Cell.

[218]  Amar Gajjar,et al.  Radial glia cells are candidate stem cells of ependymoma. , 2005, Cancer cell.

[219]  A. Ruiz i Altaba,et al.  Brain as a paradigm of organ growth: Hedgehog-Gli signaling in neural stem cells and brain tumors. , 2005, Journal of neurobiology.

[220]  Mitchel S Berger,et al.  Neural stem cells and the origin of gliomas. , 2005, The New England journal of medicine.

[221]  Q. Su,et al.  Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. , 2005, Cancer research.

[222]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[223]  D. Farkas,et al.  Isolation of cancer stem cells from adult glioblastoma multiforme , 2004, Oncogene.

[224]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[225]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[226]  Catherine L Nutt,et al.  The Oligodendroglial Lineage Marker OLIG2 Is Universally Expressed in Diffuse Gliomas , 2004, Journal of neuropathology and experimental neurology.

[227]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[228]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[229]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[230]  Paul S Mischel,et al.  Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. , 2003, Cancer research.

[231]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[232]  I. Bernstein,et al.  Delta-1 enhances marrow and thymus repopulating ability of human CD34(+)CD38(-) cord blood cells. , 2002, The Journal of clinical investigation.

[233]  R. McKay,et al.  The control of neural stem cells by morphogenic signals. , 2002, Current opinion in genetics & development.

[234]  David J. Anderson,et al.  The bHLH Transcription Factors OLIG2 and OLIG1 Couple Neuronal and Glial Subtype Specification , 2002, Cell.

[235]  Raphael Kopan,et al.  Notch: a membrane-bound transcription factor. , 2002, Journal of cell science.

[236]  Adrian L. Harris,et al.  Hypoxia — a key regulatory factor in tumour growth , 2002, Nature Reviews Cancer.

[237]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[238]  J. Nye,et al.  Requirement of Notch in adulthood for neurological function and longevity , 2001, Neuroreport.

[239]  M. Andreeff,et al.  A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. , 2001, Blood.

[240]  L. Mayo,et al.  A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[241]  M. Nakafuku,et al.  Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3 , 2000, Mechanisms of Development.

[242]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[243]  M. Greenberg,et al.  Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor , 1999, Cell.

[244]  H. Varmus,et al.  A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. , 1998, Genes & development.

[245]  John Calvin Reed,et al.  Regulation of cell death protease caspase-9 by phosphorylation. , 1998, Science.

[246]  R. B. Montgomery,et al.  Constitutive Activation of Phosphatidylinositol 3-Kinase by a Naturally Occurring Mutant Epidermal Growth Factor Receptor* , 1998, The Journal of Biological Chemistry.

[247]  S. R. Datta,et al.  Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery , 1997, Cell.

[248]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[249]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[250]  J. Bishop Retroviruses and cancer genes. , 1982, Advances in cancer research.

[251]  J. Bishop,et al.  Identification of nucleotide sequences which may encode the oncogenic capacity of avian retrovirus MC29 , 1978, Journal of virology.