Three-dimensional scene flow

Scene flow is the three-dimensional motion field of points in the world, just as optical flow is the two-dimensional motion field of points in an image. Any optical flow is simply the projection of the scene flow onto the image plane of a camera. We present a framework for the computation of dense, non-rigid scene flow from optical flow. Our approach leads to straightforward linear algorithms and a classification of the task into three major scenarios: complete instantaneous knowledge of the scene structure; knowledge only of correspondence information; and no knowledge of the scene structure. We also show that multiple estimates of the normal flow cannot be used to estimate dense scene flow directly without some form of smoothing or regularization.

[1]  Michael G. Strintzis,et al.  Model-Based Joint Motion and Structure Estimation from Stereo Images , 1997, Comput. Vis. Image Underst..

[2]  Yun Q. Shi,et al.  Unified optical flow field approach to motion analysis from a sequence of stereo images , 1994, Pattern Recognit..

[3]  Takeo Kanade,et al.  Constructing virtual worlds using dense stereo , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[4]  Rama Chellappa,et al.  3-D Motion Estimation Using a Sequence of Noisy Stereo Images: Models, Estimation, and Uniqueness Results , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[6]  Olivier Faugeras,et al.  3D Dynamic Scene Analysis , 1992 .

[7]  Takeo Kanade,et al.  The 3D Room: Digitizing Time-Varying 3D Events by Synchronized Multiple Video Streams , 1998 .

[8]  Alex Pentland,et al.  Recovery of Nonrigid Motion and Structure , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[10]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[11]  Amnon Shashua,et al.  Non-Rigid Parallax for 3D Linear Motion , 1998, CVPR 1998.

[12]  Zhengyou Zhang,et al.  Estimation of Displacements from Two 3-D Frames Obtained From Stereo , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Robert T. Collins,et al.  A space-sweep approach to true multi-image matching , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[15]  Takeo Kanade,et al.  Recovery of dynamic scene structure from multiple image sequences , 1996, 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems (Cat. No.96TH8242).

[16]  S Ullman,et al.  Maximizing Rigidity: The Incremental Recovery of 3-D Structure from Rigid and Nonrigid Motion , 1984, Perception.

[17]  G.-S. Young,et al.  3-D motion estimation using a sequence of noisy stereo images , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Dimitris N. Metaxas,et al.  Shape and Nonrigid Motion Estimation Through Physics-Based Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Shahriar Negahdaripour,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004 .

[20]  Jake K. Aggarwal,et al.  The reconstruction of dynamic 3D structure of biological objects using stereo microscope images , 1997, Machine Vision and Applications.

[21]  Michael A. Penna The incremental approximation of nonrigid motion , 1994 .

[22]  Allen M. Waxman,et al.  Binocular Image Flows: Steps Toward Stereo-Motion Fusion , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .