Lyapunov Inverse Iteration for Identifying Hopf Bifurcations in Models of Incompressible Flow

The identification of instability in large-scale dynamical systems caused by Hopf bifurcation is difficult because of the problem of identifying the rightmost pair of complex eigenvalues of large sparse generalized eigenvalue problems. A new method developed in [K. Meerbergen and A. Spence, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1982--1999] avoids this computation, instead performing an inverse iteration for a certain set of real eigenvalues that requires the solution of a large-scale Lyapunov equation at each iteration. In this study, we refine the Lyapunov inverse iteration method to make it more robust and efficient, and we examine its performance on challenging test problems arising from fluid dynamics. Various implementation issues are discussed, including the use of inexact inner iterations and the impact of the choice of iterative solution for the Lyapunov equations, and the effect of eigenvalue distribution on performance. Numerical experiments demonstrate the robustness of the algorithm.

[1]  Valeria Simoncini,et al.  Analysis of the Rational Krylov Subspace and ADI Methods for Solving the Lyapunov Equation , 2011, SIAM J. Numer. Anal..

[2]  Axel Ruhe The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices , 1994 .

[3]  A. Spence,et al.  Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..

[4]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[5]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[6]  John Guckenheimer,et al.  Computing Hopf Bifurcations. II: Three Examples From Neurophysiology , 1996, SIAM J. Sci. Comput..

[7]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[8]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[9]  Roger Pierre,et al.  Localization of Hopf bifurcations in fluid flow problems , 1997 .

[10]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[11]  Roger Pierre,et al.  Some Experiments with Stability Analysis of Discrete Incompressible Flows in the Lid-Driven Cavity , 1997 .

[12]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[13]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[14]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[15]  Nicola Parolini,et al.  Numerical investigation on the stability of singular driven cavity flow , 2002 .

[16]  Chad Lieberman,et al.  On Adaptive Choice of Shifts in Rational Krylov Subspace Reduction of Evolutionary Problems , 2010, SIAM J. Sci. Comput..

[17]  Y. Saad,et al.  Numerical solution of large Lyapunov equations , 1989 .

[18]  Karl Meerbergen,et al.  Inverse Iteration for Purely Imaginary Eigenvalues with Application to the Detection of Hopf Bifurcations in Large-Scale Problems , 2010, SIAM J. Matrix Anal. Appl..

[19]  J. Guckenheimer,et al.  Computing Hopf Bifurcations I , 1997 .

[20]  Valeria Simoncini,et al.  Adaptive rational Krylov subspaces for large-scale dynamical systems , 2011, Syst. Control. Lett..

[21]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[22]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[23]  Alastair Spence,et al.  Inexact Inverse Subspace Iteration with Preconditioning Applied to Non-Hermitian Eigenvalue Problems , 2009, SIAM J. Matrix Anal. Appl..

[24]  P. Wedin On angles between subspaces of a finite dimensional inner product space , 1983 .

[25]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[26]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .