Lyapunov Inverse Iteration for Identifying Hopf Bifurcations in Models of Incompressible Flow
暂无分享,去创建一个
Karl Meerbergen | Howard C. Elman | Alastair Spence | Minghao Wu | A. Spence | K. Meerbergen | H. Elman | Minghao Wu
[1] Valeria Simoncini,et al. Analysis of the Rational Krylov Subspace and ADI Methods for Solving the Lyapunov Equation , 2011, SIAM J. Numer. Anal..
[2] Axel Ruhe. The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices , 1994 .
[3] A. Spence,et al. Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..
[4] Valeria Simoncini,et al. A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..
[5] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[6] John Guckenheimer,et al. Computing Hopf Bifurcations. II: Three Examples From Neurophysiology , 1996, SIAM J. Sci. Comput..
[7] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[8] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[9] Roger Pierre,et al. Localization of Hopf bifurcations in fluid flow problems , 1997 .
[10] S. Hammarling. Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .
[11] Roger Pierre,et al. Some Experiments with Stability Analysis of Discrete Incompressible Flows in the Lid-Driven Cavity , 1997 .
[12] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[13] C. Bruneau,et al. The 2D lid-driven cavity problem revisited , 2006 .
[14] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[15] Nicola Parolini,et al. Numerical investigation on the stability of singular driven cavity flow , 2002 .
[16] Chad Lieberman,et al. On Adaptive Choice of Shifts in Rational Krylov Subspace Reduction of Evolutionary Problems , 2010, SIAM J. Sci. Comput..
[17] Y. Saad,et al. Numerical solution of large Lyapunov equations , 1989 .
[18] Karl Meerbergen,et al. Inverse Iteration for Purely Imaginary Eigenvalues with Application to the Detection of Hopf Bifurcations in Large-Scale Problems , 2010, SIAM J. Matrix Anal. Appl..
[19] J. Guckenheimer,et al. Computing Hopf Bifurcations I , 1997 .
[20] Valeria Simoncini,et al. Adaptive rational Krylov subspaces for large-scale dynamical systems , 2011, Syst. Control. Lett..
[21] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.
[22] I. Jaimoukha,et al. Krylov subspace methods for solving large Lyapunov equations , 1994 .
[23] Alastair Spence,et al. Inexact Inverse Subspace Iteration with Preconditioning Applied to Non-Hermitian Eigenvalue Problems , 2009, SIAM J. Matrix Anal. Appl..
[24] P. Wedin. On angles between subspaces of a finite dimensional inner product space , 1983 .
[25] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[26] Willy Govaerts,et al. Numerical methods for bifurcations of dynamical equilibria , 1987 .