Imaging and therapeutic applications of persistent luminescence nanomaterials

[1]  H. Ahmadzadehfar,et al.  Theranostics , 2021, PET Clinics.

[2]  Fabian Kiessling,et al.  Theranostic nanomedicine. , 2020, Accounts of chemical research.

[3]  B. Viana,et al.  LaAlO3:Cr3+, Sm3+: Nano-perovskite with persistent luminescence for in vivo optical imaging , 2018, Journal of Luminescence.

[4]  Xiaojun Wang,et al.  A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes , 2018 .

[5]  P. Zeng,et al.  Investigation of the long afterglow mechanism in SrAl2O4:Eu2+/Dy3+ by optically stimulated luminescence and thermoluminescence , 2018, Journal of Luminescence.

[6]  Junpeng Shi,et al.  Porous GdAlO3: Cr3+, Sm3+ drug carrier for real-time long afterglow and magnetic resonance dual-mode imaging , 2018, Journal of Luminescence.

[7]  Junle Qu,et al.  Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. , 2018, Chemical Society reviews.

[8]  B. Viana,et al.  MgTiO3:Mn4+ a multi-reading temperature nanoprobe , 2018, RSC advances.

[9]  Jin Chang,et al.  Near-Infrared Light-Excited Upconverting Persistent Nanophosphors in Vivo for Imaging-Guided Cell Therapy. , 2018, ACS applied materials & interfaces.

[10]  J. Ueda,et al.  Enhanced persistent red luminescence in Mn2+-doped (Mg,Zn)GeO3 by electron trap and conduction band engineering , 2018 .

[11]  Dong-Dong Zhang,et al.  Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. , 2018, Biomaterials.

[12]  Huang-Hao Yang,et al.  Low‐Dose X‐ray Activation of W(VI)‐Doped Persistent Luminescence Nanoparticles for Deep‐Tissue Photodynamic Therapy , 2018 .

[13]  Bingbo Zhang,et al.  Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies. , 2018, ACS nano.

[14]  B. Viana,et al.  Toward Rechargeable Persistent Luminescence for the First and Third Biological Windows via Persistent Energy Transfer and Electron Trap Redistribution. , 2018, Inorganic chemistry.

[15]  Xiu‐Ping Yan,et al.  Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. , 2018, Accounts of chemical research.

[16]  Zhengze Yu,et al.  A simple approach for glutathione functionalized persistent luminescence nanoparticles as versatile platforms for multiple in vivo applications. , 2018, Chemical communications.

[17]  D. Scherman,et al.  Nanohybrids with Magnetic and Persistent Luminescence Properties for Cell Labeling, Tracking, In Vivo Real-Time Imaging, and Magnetic Vectorization. , 2018, Small.

[18]  Dong-Dong Zhang,et al.  Fabrication of mesoporous La3Ga5GeO14:Cr3+,Zn2+ persistent luminescence nanocarriers with super-long afterglow for bioimaging-guided in vivo drug delivery to the gut. , 2018, Journal of materials chemistry. B.

[19]  Mingyuan Gao,et al.  Oral administration of highly bright Cr3+ doped ZnGa2O4 nanocrystals for in vivo targeted imaging of orthotopic breast cancer. , 2018, Journal of materials chemistry. B.

[20]  Xiu‐Ping Yan,et al.  Biomimetic Persistent Luminescent Nanoplatform for Autofluorescence-Free Metastasis Tracking and Chemophotodynamic Therapy. , 2018, Analytical chemistry.

[21]  Morgane Pellerin,et al.  Persistent luminescence of transition metal (Co, Ni...)-doped ZnGa2O4 phosphors for applications in the near-infrared range , 2018, OPTO.

[22]  Yang Xie,et al.  Near-infrared rechargeable "optical battery" implant for irradiation-free photodynamic therapy. , 2018, Biomaterials.

[23]  Chihua Fang,et al.  Near infrared-emitting persistent luminescent nanoparticles for Hepatocellular Carcinoma imaging and luminescence-guided surgery. , 2018, Biomaterials.

[24]  Yifeng Lei,et al.  Near-infrared quantum-cutting and long-persistent phosphor Ca3Ga2Ge3O12: Pr3+, Yb3+ for application in in vivo bioimaging and dye-sensitized solar cells , 2017 .

[25]  A. Varenne,et al.  Photo-stimulation of persistent luminescence nanoparticles enhances cancer cells death. , 2017, International journal of pharmaceutics.

[26]  A. Varenne,et al.  Long-term toxicological effects of persistent luminescence nanoparticles after intravenous injection in mice. , 2017, International journal of pharmaceutics.

[27]  A. Varenne,et al.  Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona: The non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin. , 2017, Colloids and surfaces. B, Biointerfaces.

[28]  W. Ji,et al.  Upconverting and persistent luminescent nanocarriers for accurately imaging-guided photothermal therapy. , 2017, Materials science & engineering. C, Materials for biological applications.

[29]  Ying Zhang,et al.  Near-infrared persistent luminescence phosphors ZnGa2O4:Cr3+ as an accurately tracker to photothermal therapy in vivo for visual treatment. , 2017, Materials science & engineering. C, Materials for biological applications.

[30]  J. Qiu,et al.  Tunable long persistent luminescence in the second near-infrared window via crystal field control , 2017, Scientific Reports.

[31]  Meng Zhang,et al.  Ratiometric Afterglow Nanothermometer for Simultaneous in Situ Bioimaging and Local Tissue Temperature Sensing , 2017 .

[32]  Huilin Liu,et al.  Persistent Luminescence Nanophosphor Involved Near-Infrared Optical Bioimaging for Investigation of Foodborne Probiotics Biodistribution in Vivo: A Proof-of-Concept Study. , 2017, Journal of agricultural and food chemistry.

[33]  J. G. Solé,et al.  Persistent luminescence nanothermometers , 2017 .

[34]  Wei Zheng,et al.  Autofluorescence-Free Targeted Tumor Imaging Based on Luminous Nanoparticles with Composition-Dependent Size and Persistent Luminescence. , 2017, ACS nano.

[35]  H. Yamada,et al.  Near-infrared luminescence from double-perovskite Sr3Sn2O7:Nd3+: A new class of probe for in vivo imaging in the second optical window of biological tissue , 2017 .

[36]  Jianhua Hao,et al.  X-ray-Activated Near-Infrared Persistent Luminescent Probe for Deep-Tissue and Renewable in Vivo Bioimaging. , 2017, ACS applied materials & interfaces.

[37]  J. Hao,et al.  A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging. , 2017, Nanoscale.

[38]  René M. Botnar,et al.  Gadolinium and Platinum in Tandem: Real-time Multi-Modal Monitoring of Drug Delivery by MRI and Fluorescence Imaging , 2017, Nanotheranostics.

[39]  K. Poeppelmeier,et al.  Chemistry-Inspired Adaptable Framework Structures. , 2017, Accounts of chemical research.

[40]  Q. Su,et al.  Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging , 2017 .

[41]  Oliver T. Bruns,et al.  Next-generation in vivo optical imaging with short-wave infrared quantum dots , 2017, Nature Biomedical Engineering.

[42]  G. Mor,et al.  Novel approach for the detection of intraperitoneal micrometastasis using an ovarian cancer mouse model , 2017, Scientific Reports.

[43]  P. Dorenbos,et al.  Thermally Stimulated Luminescence and First-Principle Study of Defect Configurations in the Perovskite-Type Hydrides LiMH3:Eu2+ (M = Sr, Ba) and the Corresponding Deuterides , 2016 .

[44]  D. Murata,et al.  Near-infrared long persistent luminescence of Er3+ in garnet for the third bio-imaging window , 2016 .

[45]  Junying Zhang,et al.  Synthesis and conjugation of Sr2MgSi2O7:Eu2+, Dy3+ water soluble afterglow nanoparticles for photodynamic activation. , 2016, Photodiagnosis and photodynamic therapy.

[46]  Z. Xia,et al.  Progress in discovery and structural design of color conversion phosphors for LEDs , 2016 .

[47]  Ian D. McGilvray,et al.  Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[48]  Dong-Dong Zhang,et al.  Synthesis of GdAlO3:Mn4+,Ge4+@Au Core-Shell Nanoprobes with Plasmon-Enhanced Near-Infrared Persistent Luminescence for in Vivo Trimodality Bioimaging. , 2016, ACS applied materials & interfaces.

[49]  D. von Elverfeldt,et al.  Accumulating nanoparticles by EPR: A route of no return. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[50]  Ian D. McGilvray,et al.  Mechanism of hard nanomaterial clearance by the liver , 2016, Nature materials.

[51]  A. Benayas,et al.  Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. , 2016, Nanoscale horizons.

[52]  T. Lecuyer,et al.  Physico-chemical characterizations of Cr doped persistent luminescence nanoparticles , 2016, SPIE BiOS.

[53]  Yang Li,et al.  Long persistent phosphors--from fundamentals to applications. , 2016, Chemical Society reviews.

[54]  Daniel Jaque,et al.  Inorganic nanoparticles for optical bioimaging , 2016 .

[55]  Q. Zhang,et al.  Mesoporous nanoparticles Gd2O3@mSiO2/ZnGa2O4:Cr3+,Bi3+ as multifunctional probes for bioimaging. , 2016, Journal of materials chemistry. B.

[56]  F. Liu,et al.  Phonon-assisted upconversion charging in Zn3Ga2GeO8:Cr(3+) near-infrared persistent phosphor. , 2016, Optics letters.

[57]  B. Viana,et al.  Photostimulation induced persistent luminescence in Y 3 Al 2 Ga 3 O 12 :Cr 3+ , 2016 .

[58]  Thomas Maldiney,et al.  Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging , 2016 .

[59]  Didier Gourier,et al.  Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence , 2016 .

[60]  P. Smet,et al.  Chapter 274 – Persistent Phosphors , 2015 .

[61]  A. Varenne,et al.  Functionalization and characterization of persistent luminescence nanoparticles by dynamic light scattering, laser Doppler and capillary electrophoresis. , 2015, Colloids and surfaces. B, Biointerfaces.

[62]  V. Amaral,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[63]  A. Sontakke,et al.  Near-infrared multi-wavelengths long persistent luminescence of Nd(3+) ion through persistent energy transfer in Ce(3+), Cr(3+) co-doped Y(3)Al(2)Ga(3)O(12) for the first and second bio-imaging windows , 2015 .

[64]  D. Scherman,et al.  Design, Properties, and In Vivo Behavior of Super-paramagnetic Persistent Luminescence Nanohybrids. , 2015, Small.

[65]  L. Motte,et al.  Non-aqueous sol-gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. , 2015, Chemistry.

[66]  D. Scherman,et al.  Controlling aminosilane layer thickness to extend the plasma half-life of stealth persistent luminescence nanoparticles in vivo. , 2015, Journal of materials chemistry. B.

[67]  Bhupendra B. Srivastava,et al.  Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. , 2015, Chemical communications.

[68]  W. Fan,et al.  Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence , 2015, Journal of the American Chemical Society.

[69]  Bruno Viana,et al.  Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors , 2015 .

[70]  Luc Faucher,et al.  Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging , 2015, Photonics West - Optoelectronic Materials and Devices.

[71]  Feng Liu,et al.  Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. , 2015, Nano letters.

[72]  Bruno Viana,et al.  Persistent luminescence in nanophosphors for long term in-vivo bio-imaging , 2015, Photonics West - Biomedical Optics.

[73]  N. Kaji,et al.  Influence of Autofluorescence Derived From Living Body on In Vivo Fluorescence Imaging Using Quantum Dots. , 2015, Cell medicine.

[74]  Warren C W Chan,et al.  Nanoparticle-blood interactions: the implications on solid tumour targeting. , 2015, Chemical communications.

[75]  Junpeng Shi,et al.  Specific Recognition of Breast Cancer Cells In Vitro Using Near Infrared-Emitting Long-Persistence Luminescent Zn3Ga2Ge2O10:Cr3+ Nanoprobes , 2014, Nano-Micro Letters.

[76]  Lei Xing,et al.  X-ray-Induced Shortwave Infrared Biomedical Imaging Using Rare-Earth Nanoprobes , 2014, Nano letters.

[77]  Sunil Kumar Singh Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications , 2014 .

[78]  B. Viana,et al.  Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging , 2014 .

[79]  M. Nikl,et al.  Intrinsic defects, nonstoichiometry, and aliovalent doping of A 2+ B 4+ O 3 perovskite scintillators , 2014 .

[80]  D. Scherman,et al.  Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery. , 2014, Nanoscale.

[81]  Feng Liu,et al.  Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor. , 2014, Physical review letters.

[82]  Chunlin Liu,et al.  Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging , 2014 .

[83]  D. Scherman,et al.  Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: New biomarkers for in vivo imaging , 2014 .

[84]  H. Yamada,et al.  Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging , 2014 .

[85]  Feng Liu,et al.  Photostimulable Near-Infrared Persistent Luminescent Nanoprobes for Ultrasensitive and Longitudinal Deep-Tissue Bio-Imaging , 2014, Theranostics.

[86]  Wei Zheng,et al.  Luminescent biodetection based on lanthanide-doped inorganic nanoprobes , 2014 .

[87]  Chen-Sheng Yeh,et al.  Near-infrared light-responsive nanomaterials in cancer therapeutics. , 2014, Chemical Society reviews.

[88]  H. Dai,et al.  Through-skull fluorescence imaging of the brain in a new near-infrared window , 2014, Nature Photonics.

[89]  Hongwei Lu,et al.  A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. , 2014, Inorganic chemistry.

[90]  Leone Spiccia,et al.  Zwitterionic-coated "stealth" nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. , 2014, Small.

[91]  B. Viana,et al.  Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate , 2014 .

[92]  P. Dorenbos,et al.  Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors , 2014 .

[93]  M. Jong,et al.  Imaging preclinical tumour models: improving translational power , 2014, Nature Reviews Cancer.

[94]  Meng Sun,et al.  Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo. , 2014, Optics express.

[95]  Qiang Zhao,et al.  Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. , 2014, Analytical chemistry.

[96]  Didier Gourier,et al.  The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. , 2014, Nature materials.

[97]  Yang Li,et al.  Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging , 2014 .

[98]  P. Prasad,et al.  Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics , 2014, Chemical reviews.

[99]  Setsuhisa Tanabe,et al.  Development of blue excitable persistent phosphor of Ce3+-doped garnet ceramics by bandgap engineering and metal sensitization , 2014, Photonics West - Optoelectronic Materials and Devices.

[100]  Jianrong Qiu,et al.  Anti-Stokes Fluorescent Probe with Incoherent Excitation , 2014, Scientific Reports.

[101]  Meizhen Yin,et al.  Design and development of fluorescent nanostructures for bioimaging , 2014 .

[102]  Hongtao Yu,et al.  Theranostic nanomedicine for cancer detection and treatment , 2014, Journal of food and drug analysis.

[103]  Didier Gourier,et al.  Storage of Visible Light for Long-Lasting Phosphorescence in Chromium-Doped Zinc Gallate , 2014 .

[104]  C. Kuo,et al.  Use of optical imaging to progress novel therapeutics to the clinic. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[105]  Qiang Zhao,et al.  Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. , 2013, Journal of the American Chemical Society.

[106]  D. Scherman,et al.  In vivo imaging with persistent luminescence silicate-based nanoparticles , 2013 .

[107]  Ick Chan Kwon,et al.  Nanophotosensitizers toward advanced photodynamic therapy of Cancer. , 2013, Cancer letters.

[108]  Todd H. Stokes,et al.  Semiconductor quantum dots for bioimaging and biodiagnostic applications. , 2013, Annual review of analytical chemistry.

[109]  Ying Liu,et al.  Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. , 2013, Small.

[110]  J. Ueda,et al.  Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping , 2013 .

[111]  P. Dorenbos Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds , 2013 .

[112]  Feng Liu,et al.  Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8 , 2013, Scientific Reports.

[113]  Ali Khademhosseini,et al.  Biocompatibility of engineered nanoparticles for drug delivery. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[114]  Eric C. Carnes,et al.  Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. , 2013, Accounts of chemical research.

[115]  P. Dorenbos Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE=Gd, Y, Lu) garnet compounds , 2013 .

[116]  B. Uberuaga,et al.  The effect of Ga‐doping on the defect chemistry of RE3Al5O12 garnets , 2013 .

[117]  P. Smet,et al.  Revealing trap depth distributions in persistent phosphors , 2013 .

[118]  E. Suard,et al.  How to induce red persistent luminescence in biocompatible Ca3(PO4)2 , 2013 .

[119]  John C. Gore,et al.  Monitoring pH-triggered drug release from radioluminescent nanocapsules with X-ray excited optical luminescence. , 2013, ACS nano.

[120]  Zhuang Liu,et al.  Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. , 2013, Nanoscale.

[121]  Jaewon Lee,et al.  Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by γ‐ray radiation , 2013, British journal of pharmacology.

[122]  D. Jaffray Image-guided radiotherapy: from current concept to future perspectives , 2012, Nature Reviews Clinical Oncology.

[123]  H. Dai,et al.  Multifunctional in vivo vascular imaging using near-infrared II fluorescence , 2012, Nature Medicine.

[124]  Patrick Couvreur,et al.  Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. , 2012, Chemical reviews.

[125]  Piotr Walczak,et al.  Personalized nanomedicine advancements for stem cell tracking. , 2012, Advanced drug delivery reviews.

[126]  I. D. Baere,et al.  Mechanoluminescence in BaSi2O2N2:Eu , 2012 .

[127]  T. Asefa,et al.  Biocompatibility of mesoporous silica nanoparticles. , 2012, Chemical research in toxicology.

[128]  Petri Välisuo,et al.  A Review of Indocyanine Green Fluorescent Imaging in Surgery , 2012, Int. J. Biomed. Imaging.

[129]  M. Lastusaari,et al.  Persistent luminescence mechanisms: human imagination at work , 2012 .

[130]  G. Battaglia,et al.  Endocytosis at the nanoscale. , 2012, Chemical Society reviews.

[131]  Kwangmeyung Kim,et al.  Multifunctional nanoparticles for multimodal imaging and theragnosis. , 2012, Chemical Society reviews.

[132]  D. Scherman,et al.  In vivo optical imaging with rare earth doped Ca_2Si_5N_8 persistent luminescence nanoparticles , 2012 .

[133]  D. Scherman,et al.  Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability. , 2012, International journal of pharmaceutics.

[134]  Seppo Ylä-Herttuala,et al.  In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. , 2012, Bioconjugate chemistry.

[135]  Addason F. H. McCaslin,et al.  In vivo optical imaging and dynamic contrast methods for biomedical research , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[136]  Ralph Weissleder,et al.  Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. , 2011, Accounts of chemical research.

[137]  J. Ueda,et al.  Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement , 2011 .

[138]  P. Smet,et al.  Luminescence and x-ray absorption measurements of persistent SrAl 2 O 4 :Eu,Dy powders: Evidence for valence state changes , 2011 .

[139]  A. Vedda,et al.  Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping , 2011 .

[140]  Rebekah Drezek,et al.  In vivo biodistribution of nanoparticles. , 2011, Nanomedicine.

[141]  Didier Gourier,et al.  Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. , 2011, Journal of the American Chemical Society.

[142]  B. Viana,et al.  Defects Identification and Effects of Annealing on Lu2(1-x)Y2xSiO5 (LYSO) Single Crystals for Scintillation Application , 2011, Materials.

[143]  Paul Leblans,et al.  Storage Phosphors for Medical Imaging , 2011, Materials.

[144]  B. Viana,et al.  ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness. , 2011, Optics express.

[145]  Kevin Welsher,et al.  Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window , 2011, Proceedings of the National Academy of Sciences.

[146]  Michael R Hamblin,et al.  Photodynamic therapy of cancer: An update , 2011, CA: a cancer journal for clinicians.

[147]  Soumen Das,et al.  PEGylated inorganic nanoparticles. , 2011, Angewandte Chemie.

[148]  P. Dorenbos,et al.  Designing a Red Persistent Luminescence Phosphor: The Example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy) , 2011 .

[149]  Thomas Maldiney,et al.  Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. , 2011, ACS nano.

[150]  Yaping Li,et al.  In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. , 2011, Small.

[151]  A. S. Moses,et al.  Imaging and drug delivery using theranostic nanoparticles. , 2010, Advanced drug delivery reviews.

[152]  Jin Xie,et al.  Nanoparticle-based theranostic agents. , 2010, Advanced drug delivery reviews.

[153]  Zongxi Li,et al.  Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. , 2010, Small.

[154]  P. Smet,et al.  Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review , 2010, Materials.

[155]  P. Smet,et al.  Persistent Luminescence in Eu2+-Doped Compounds: A Review , 2010, Materials.

[156]  Torre M Bydlon,et al.  Optical Assesssment of Tumor Resection Margins in the Breast , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[157]  Gang Zheng,et al.  Activatable photosensitizers for imaging and therapy. , 2010, Chemical reviews.

[158]  Jorma Hölsä,et al.  Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence , 2009 .

[159]  M. C. Mancini,et al.  Bioimaging: second window for in vivo imaging. , 2009, Nature nanotechnology.

[160]  Laurie G Hudson,et al.  Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells. , 2009, Nano letters.

[161]  Robert Langer,et al.  The biocompatibility of mesoporous silicates. , 2008, Biomaterials.

[162]  James H. Adair,et al.  Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. , 2008, ACS nano.

[163]  D. Scherman,et al.  Nanoparticles for imaging and tumor gene delivery. , 2008, Tumori.

[164]  D. Scherman,et al.  Nanoparticles for Imaging and Tumor Gene Delivery , 2008 .

[165]  P. Dorenbos,et al.  Lanthanide energy levels in YPO4 , 2008 .

[166]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[167]  Didier Gourier,et al.  Nanoprobes with near-infrared persistent luminescence for in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[168]  C. Schnitzler,et al.  Bioluminescent and Red-Fluorescent Lures in a Deep-Sea Siphonophore , 2005, Science.

[169]  Zheng Huang,et al.  A Review of Progress in Clinical Photodynamic Therapy , 2005, Technology in cancer research & treatment.

[170]  Jorma Hölsä,et al.  Role of defect states in persistent luminescence materials , 2004 .

[171]  Kai Rothkamm,et al.  Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Thomas J. Dougherty,et al.  Basic principles of photodynamic therapy , 2001 .

[173]  Nobuyoshi Takeuchi,et al.  A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+, Dy3+. , 1996 .

[174]  Nobuyoshi Takeuchi,et al.  A New Long Phosphorescent Phosphor with High Brightness, SrAl2 O 4 : Eu2 + , Dy3 + , 1996 .

[175]  Junpeng Shi,et al.  A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. , 2018, Biomaterials.

[176]  D. Scherman,et al.  Persistent luminescence induced by near infra-red photostimulation in chromium-doped zinc gallate for in vivo optical imaging , 2017 .

[177]  Junpeng Shi,et al.  Near Infrared-Emitting Persistent Luminescent Nanoprobes for Cellular and Deep Tissue Imaging at 800 nm , 2017 .

[178]  Junpeng Shi,et al.  Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. , 2015, Biomaterials.

[179]  Thomas Maldiney,et al.  Gadolinium‐Doped Persistent Nanophosphors as Versatile Tool for Multimodal In Vivo Imaging , 2015 .

[180]  Ying Zhang,et al.  Advanced materials and processing for drug delivery: the past and the future. , 2013, Advanced drug delivery reviews.

[181]  B. Uberuaga,et al.  The effect of Ga-doping on the defect chemistry of RE 3 Al 5 O 12 garnets , 2013 .

[182]  Daniel Jaque,et al.  Luminescence nanothermometry. , 2012, Nanoscale.

[183]  Soumen Das,et al.  PEGylated Inorganic Nanoparticles , 2011 .

[184]  J. Ueda,et al.  Analysis of Ce luminescence quenching in solid solutions between Y(3)Al(5)O(12) and Y(3)Ga(5)O(12) by temperature dependence of photoconductivity measurement. , 2011, Journal of applied physics.

[185]  Hak Soo Choi,et al.  Design considerations for tumour-targeted nanoparticles. , 2010, Nature nanotechnology.

[186]  Ying-ying Huang,et al.  Low-level laser therapy: an emerging clinical paradigm , 2009 .

[187]  D T Delpy,et al.  In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy. , 1997, Applied optics.

[188]  Reuven Chen,et al.  Superlinear filling of traps in crystals due to competition during irradiation , 1979 .