In Situ Solid State 7Li NMR Observations of Lithium Metal Deposition during Overcharge in Lithium Ion Batteries

[1]  Kazuma Gotoh,et al.  In situ7Li nuclear magnetic resonance study of the relaxation effect in practical lithium ion batteries , 2014 .

[2]  John Rick,et al.  In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes , 2014 .

[3]  Hajime Arai,et al.  In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode , 2013 .

[4]  C. Grey,et al.  Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: application to Li1.08Mn1.92O4 spinels. , 2013, Journal of magnetic resonance.

[5]  Frédéric Chevallier,et al.  In situ7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite: second cycle analysis , 2013 .

[6]  Neeraj Sharma,et al.  Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction , 2013 .

[7]  Yang Ren,et al.  In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery , 2013 .

[8]  C. Grey,et al.  In situ NMR of lithium ion batteries: bulk susceptibility effects and practical considerations. , 2012, Solid state nuclear magnetic resonance.

[9]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[10]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[11]  Kazuyuki Takeda,et al.  OPENCORE NMR: open-source core modules for implementing an integrated FPGA-based NMR spectrometer. , 2008, Journal of magnetic resonance.

[12]  I. Jung,et al.  Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries , 2007 .

[13]  F. Chevallier,et al.  In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle , 2007 .

[14]  T. Horiba,et al.  Development of a high power lithium secondary battery for hybrid electric vehicles , 2005 .

[15]  J. Rouzaud,et al.  The first in situ 7Li NMR study of the reversible lithium insertion mechanism in disorganised carbons , 2004 .

[16]  François Béguin,et al.  In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons , 2003 .

[17]  François Béguin,et al.  The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries , 2003 .

[18]  J. Yamaki,et al.  Thermal stability of graphite anode with electrolyte in lithium-ion cells , 2002 .

[19]  Andrea G. Bishop,et al.  Carbon electrode morphology and thermal stability of the passivation layer , 2001 .

[20]  Christopher S. Johnson,et al.  7Li NMR study of intercalated lithium in curved carbon lattices , 2000 .

[21]  Jean-Marie Tarascon,et al.  In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries , 1998 .

[22]  Dawn Bernardi,et al.  Analysis of pulse and relaxation behavior in lithium-ion batteries , 2011 .

[23]  Walter van Schalkwijk,et al.  Advances in Lithium Ion Batteries Introduction , 2002 .