Fractional order junctions

Abstract Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional “parasitic” elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

[1]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[2]  L. Chua Memristor-The missing circuit element , 1971 .

[3]  J. A. Tenreiro Machado,et al.  Fractional generalization of memristor and higher order elements , 2013, Commun. Nonlinear Sci. Numer. Simul..

[4]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[5]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[6]  J. T. Tenreiro Machado,et al.  Fractional order inductive phenomena based on the skin effect , 2012 .

[7]  K. O’Grady,et al.  柔軟記録媒体のための金属粒子(MP)技術の開発 , 2008 .

[8]  J. A. Tenreiro Machado,et al.  Approximating fractional derivatives through the generalized mean , 2009 .

[9]  S. C. BRADFORD,et al.  The Liesegang Phenomenon and Concretionary Structure in Rocks , 1916, Nature.

[10]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[11]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[12]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[13]  Leon O. Chua,et al.  Device modeling via nonlinear circuit elements , 1980 .

[14]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[15]  Frank Y. Wang Memristor for Introductory Physics , 2008 .

[16]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[17]  R. Williams,et al.  How We Found The Missing Memristor , 2008, IEEE Spectrum.

[18]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[19]  Karabi Biswas,et al.  Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[21]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[22]  I. Podlubny Fractional differential equations , 1998 .

[23]  R. Kurzweil,et al.  The Singularity Is Near: When Humans Transcend Biology , 2006 .

[24]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[25]  M. Rivero,et al.  Fractional calculus: A survey of useful formulas , 2013, The European Physical Journal Special Topics.

[26]  St'ephane Dugowson,et al.  Les différentielles métaphysiques : histoire et philosophie de la généralisation de l'ordre de la dérivation , 1994 .

[27]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[28]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[29]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[30]  J. A. Tenreiro Machado,et al.  Fractional derivatives: Probability interpretation and frequency response of rational approximations , 2009 .

[31]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  S. Westerlund,et al.  Capacitor theory , 1994 .

[33]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[34]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[35]  T. Kuhn,et al.  The Structure of Scientific Revolutions , 1963 .

[36]  A. Oustaloup Systèmes asservis linéaires d'ordre fractionnaire : théorie et pratique , 1983 .

[37]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[38]  F. Tatom THE RELATIONSHIP BETWEEN FRACTIONAL CALCULUS AND FRACTALS , 1995 .

[39]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[40]  J. A. Tenreiro Machado,et al.  Approximating fractional derivatives in the perspective of system control , 2009 .

[41]  I. Schäfer,et al.  Modelling of lossy coils using fractional derivatives , 2008 .

[42]  Dimitri Jeltsema,et al.  Port-Hamiltonian Formulation of Systems With Memory , 2012, Proceedings of the IEEE.

[43]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .