High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices

This paper demonstrates gate-all-around (GAA) n- and p-FETs on a silicon-on-insulator with /spl les/ 5-nm-diameter laterally formed Si nanowire channel. Alternating phase shift mask lithography and self-limiting oxidation techniques were utilized to form 140- to 1000-nm-long nanowires, followed by FET fabrication. The devices exhibit excellent electrostatic control, e.g., near ideal subthreshold slope (/spl sim/ 63 mV/dec), low drain-induced barrier lowering (/spl sim/ 10 mV/V), and with I/sub ON//I/sub OFF/ ratio of /spl sim/10/sup 6/. High drive currents of /spl sim/ 1.5 and /spl sim/1.0 mA//spl mu/m were achieved for 180-nm-long nand p-FETs, respectively. It is verified that the threshold voltage of GAA FETs is independent of substrate bias due to the complete electrostatic shielding of the channel body.

[1]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[2]  J. Colinge,et al.  Silicon-on-insulator 'gate-all-around device' , 1990, International Technical Digest on Electron Devices.

[3]  J. Plummer,et al.  Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's , 1997, IEEE Electron Device Letters.

[4]  Stephen Y. Chou,et al.  Wire-channel and wrap-around-gate metal–oxide–semiconductor field-effect transistors with a significant reduction of short channel effects , 1997 .

[5]  Jeffrey Bokor,et al.  Fabrication of planar silicon nanowires on silicon-on-insulator using stress limited oxidation , 1997 .

[6]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[7]  Jeffrey Bokor,et al.  Novel method for silicon quantum wire transistor fabrication , 1999 .

[8]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[9]  C. Hu,et al.  Sub-50 nm P-channel FinFET , 2001 .

[10]  Jong-Tea Park,et al.  Pi-Gate SOI MOSFET , 2001, IEEE Electron Device Letters.

[11]  Y. Yeo,et al.  25 nm CMOS Omega FETs , 2002, Digest. International Electron Devices Meeting,.

[12]  T. Skotnicki,et al.  50 nm-Gate All Around (GAA)-Silicon On Nothing (SON)-devices: a simple way to co-integration of GAA transistors within bulk MOSFET process , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[13]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs: device design guidelines , 2002 .

[14]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[15]  Kinam Kim,et al.  A novel multibridge-channel MOSFET (MBCFET): fabrication technologies and characteristics , 2003 .

[16]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[17]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[18]  S. Brueck,et al.  Mobility and transverse electric field effects in channel conduction of wrap-around-gate nanowire MOSFETs , 2004 .

[19]  R. Chau Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004 .

[20]  Chenming Hu Device challenges and opportunities , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[21]  Chenming Hu,et al.  5nm-gate nanowire FinFET , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..