Time-Varying Autoregressive (TVAR) Models for Multiple Radar Observations

We consider the adaptive radar problem where the properties of the (nonstationary) clutter signals can be estimated using multiple observations of radar returns from a number of sufficiently homogeneous range/azimuth resolution cells. We derive a method for approximating an arbitrary Hermitian covariance matrix by a time-varying autoregressive model of order m, TVAR(m), that is based on the Dym-Gohberg band-matrix extension technique which gives the unique TVAR(m) model for any nondegenerate covariance matrix. We demonstrate that the Dym-Gohberg transformation of the sample covariance matrix gives the maximum-likelihood (ML) estimate of the TVAR(m) covariance matrix. We introduce an example of TVAR(m) clutter modeling for high-frequency over-the-horizon radar that demonstrates its practical importance

[1]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[2]  William L. Melvin,et al.  Space-time adaptive radar performance in heterogeneous clutter , 2000, IEEE Trans. Aerosp. Electron. Syst..

[3]  S. Rotheram Ground-wave propagation. Part 1: Theory for short distances , 1981 .

[4]  S. J. Anderson,et al.  A unified approach to detection, classification, and correction of ionospheric distortion in HF sky wave radar systems , 1998 .

[5]  H. Dym,et al.  A New Class of Contractive Interpolants and Maximum Entropy Principles , 1988 .

[6]  Yuri I. Abramovich,et al.  Impulsive Noise Mitigation in Spatial and Temporal Domains for Surface-Wave Over-the-Horizon Radar , 1999 .

[7]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Kie B. Eom,et al.  Analysis of Acoustic Signatures from Moving Vehicles Using Time-Varying Autoregressive Models , 1999, Multidimens. Syst. Signal Process..

[9]  H. Dym,et al.  Extensions of band matrices with band inverses , 1981 .

[10]  J. Parent,et al.  A method to correct HF skywave backscattered signals for ionospheric frequency modulation , 1988 .

[11]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[12]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[13]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[14]  V. G. Kachur,et al.  Adaptive Cancellation Filters for Stationary Interference with a Toeplitz Correlation Matrix , 1988 .

[15]  S. Haykin,et al.  Maximum-entropy spectral analysis of radar clutter , 1982, Proceedings of the IEEE.

[16]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[17]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[18]  Chukiet Sodsri Time-varying autoregressive modelling for nonstationary acoustic signal and its frequency analysis , 2003 .

[19]  A. A. Kolosov Over-the-horizon radar , 1987 .

[20]  Richard Klemm,et al.  Space-time adaptive processing : principles and applications , 1998 .

[21]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[22]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[23]  Donald E. Barrick,et al.  The statistics of HF sea-echo Doppler spectra , 1977 .

[24]  早川 毅,et al.  Modern multivariate statistical analysis : a graduate course and handbook , 1985 .

[25]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[26]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[27]  H. Woerdeman Matrix and operator extensions , 1989 .

[28]  S. Haykin,et al.  Modeling of clutter for coherent pulsed radar (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[29]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[30]  R. Kass,et al.  Shrinkage Estimators for Covariance Matrices , 2001, Biometrics.

[31]  S. Mallat,et al.  Adaptive covariance estimation of locally stationary processes , 1998 .