Regulation of depolarizing GABAA receptor-mediated synaptic potentials by synaptic activation of GABAB autoreceptors in the rat hippocampus

[1]  C. Davies,et al.  Comparison of antagonist potencies at pre‐ and post‐synaptic GABAB receptors at inhibitory synapses in the CA1 region of the rat hippocampus , 1999, British journal of pharmacology.

[2]  Kenneth A. Jones,et al.  GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2 , 1998, Nature.

[3]  R. Shigemoto,et al.  GABAB-receptor subtypes assemble into functional heteromeric complexes , 1998, Nature.

[4]  Alan Wise,et al.  Heterodimerization is required for the formation of a functional GABAB receptor , 1998, Nature.

[5]  C. Davies,et al.  Pharmacological modulation of GABAA receptor‐mediated postsynaptic potentials in the CA1 region of the rat hippocampus , 1998, British journal of pharmacology.

[6]  A. Konnerth,et al.  First one in, last one out: the role of GABAergic transmission in generation and degeneration , 1998, Progress in Neurobiology.

[7]  O. Garaschuk,et al.  Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus , 1998, The Journal of physiology.

[8]  X. Leinekugel,et al.  GABAA, NMDA and AMPA receptors: a developmentally regulated `ménage à trois' , 1997, Trends in Neurosciences.

[9]  J. Voipio,et al.  Long-Lasting GABA-Mediated Depolarization Evoked by High-Frequency Stimulation in Pyramidal Neurons of Rat Hippocampal Slice Is Attributable to a Network-Driven, Bicarbonate-Dependent K+ Transient , 1997, The Journal of Neuroscience.

[10]  K. Kaila,et al.  Posttetanic excitation mediated by GABA(A) receptors in rat CA1 pyramidal neurons. , 1997, Journal of neurophysiology.

[11]  B. Bettler,et al.  Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors , 1997, Nature.

[12]  R. Wong,et al.  Ionic basis of the postsynaptic depolarizing GABA response in hippocampal pyramidal cells. , 1996, Journal of neurophysiology.

[13]  C. Davies,et al.  Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus. , 1996, The Journal of physiology.

[14]  A Lücke,et al.  Synchronous GABA-Mediated Potentials and Epileptiform Discharges in the Rat Limbic System In Vitro , 1996, The Journal of Neuroscience.

[15]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[16]  R. G. Hall,et al.  Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. , 1995, Journal of medicinal chemistry.

[17]  R. Pearce,et al.  Different mechanisms for use‐dependent depression of two GABAA‐mediated IPSCs in rat hippocampus. , 1995, The Journal of physiology.

[18]  G. Collingridge,et al.  A comparison of paired-pulse facilitation of AMPA and NMDA receptor-mediated excitatory postsynaptic currents in the hippocampus , 1994, Experimental Brain Research.

[19]  W. A. Wilson,et al.  Temporally distinct mechanisms of use-dependent depression at inhibitory synapses in the rat hippocampus in vitro. , 1994, Journal of neurophysiology.

[20]  C. Davies,et al.  The physiological regulation of synaptic inhibition by GABAB autoreceptors in rat hippocampus. , 1993, The Journal of physiology.

[21]  M. Raiteri,et al.  Multiple GABAB receptors. , 1993, Trends in pharmacological sciences.

[22]  C. Mondadori,et al.  CGP 36742: the first orally active GABAB blocker improves the cognitive performance of mice, rats, and rhesus monkeys. , 1993, Behavioral and neural biology.

[23]  J. Billard,et al.  Pre- and postsynaptic GABAB receptors of rat neocortical neurons differ in their pharmacological properties , 1993, Neuroscience Letters.

[24]  M. Raiteri,et al.  gamma-Aminobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor. , 1993, The Journal of pharmacology and experimental therapeutics.

[25]  T. Teyler,et al.  Role of HCO3- ions in depolarizing GABAA receptor-mediated responses in pyramidal cells of rat hippocampus. , 1993, Journal of neurophysiology.

[26]  I. Módy,et al.  Characterization of synaptically elicited GABAB responses using patch‐clamp recordings in rat hippocampal slices. , 1993, The Journal of physiology.

[27]  W. Froestl,et al.  The actions of orally active GABAB receptor antagonists on GABAergic transmission in vivo and in vitro. , 1993, European journal of pharmacology.

[28]  J. Lambert,et al.  Depression of the fast IPSP underlies paired-pulse facilitation in area CA1 of the rat hippocampus. , 1991, Journal of neurophysiology.

[29]  R. Wong,et al.  Excitatory synaptic responses mediated by GABAA receptors in the hippocampus , 1991, Science.

[30]  D. Lewis,et al.  Facilitation of the induction of long-term potentiation by GABAB receptors , 1991, Science.

[31]  G. Collingridge,et al.  GABAB autoreceptors regulate the induction of LTP , 1991, Nature.

[32]  S. Kelso,et al.  Activity‐induced decreased in early and late inhibitory synaptic conductances in hippocampus , 1991, Synapse.

[33]  M. Lacey,et al.  Electrophysiological characterization of potent agonists and antagonists at pre‐ and postsynaptic GABAB receptors on neurones in rat brain slices , 1990, British journal of pharmacology.

[34]  J. Lambert,et al.  GABAB receptors play a major role in paired-pulse facilitation in area CA1 of the rat hippocampus , 1990, Brain Research.

[35]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[36]  D. Prince,et al.  Frequency‐dependent depression of inhibition in guinea‐pig neocortex in vitro by GABAB receptor feed‐back on GABA release. , 1989, The Journal of physiology.

[37]  B. Gähwiler,et al.  Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. , 1989, Journal of neurophysiology.

[38]  B H Gähwiler,et al.  Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. , 1989, Journal of neurophysiology.

[39]  B H Gähwiler,et al.  Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro. , 1989, Journal of neurophysiology.

[40]  T. Dunwiddie,et al.  Characteristics of hippocampal primed burst potentiation in vitro and in the awake rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  R. Nicoll,et al.  Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties , 1988, Neuron.

[42]  M. Avoli,et al.  A depolarizing inhibitory postsynaptic potential activated by synaptically released gamma-aminobutyric acid under physiological conditions in rat hippocampal pyramidal cells. , 1988, Canadian journal of physiology and pharmacology.

[43]  R. Nicoll,et al.  A physiological role for GABAB receptors in the central nervous system , 1988, Nature.

[44]  Gary Lynch,et al.  Role of N-methyl-D-aspartate receptors in the induction of synaptic potentiation by burst stimulation patterned after the hippocampal θ-rhythm , 1988, Brain Research.

[45]  M. Avoli,et al.  A GABAergic depolarizing potential in the hippocampus disclosed by the convulsant 4-aminopyridine , 1987, Brain Research.

[46]  D. A. Brown,et al.  GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[47]  H. Eichenbaum,et al.  Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  R. Nicoll,et al.  Feed‐forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[49]  R. Nicoll,et al.  Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[50]  G. Lynch,et al.  Paired‐pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus , 1980, The Journal of physiology.

[51]  X. Xie,et al.  Properties of GABA‐mediated synaptic potentials induced by zinc in adult rat hippocampal pyramidal neurones. , 1993, The Journal of physiology.