A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria

Statement MITO-MAP, a high-density genetic interaction map in budding yeast, identifies a mitochondrial inner membrane–associated complex that promotes normal mitochondrial membrane organization and morphology.

[1]  F. Spencer,et al.  A genomewide screen for petite-negative yeast strains yields a new subunit of the i-AAA protease complex. , 2005, Molecular biology of the cell.

[2]  Sean R. Collins,et al.  Functional Organization of the S. cerevisiae Phosphorylation Network , 2009, Cell.

[3]  M. Tani,et al.  FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis , 2011, Molecular microbiology.

[4]  A. Reichert,et al.  Contact sites between the outer and inner membrane of mitochondria-role in protein transport. , 2002, Biochimica et biophysica acta.

[5]  R. D'Hooge,et al.  Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling , 2006, Cell.

[6]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[7]  Sean R. Collins,et al.  A comprehensive strategy enabling high-resolution functional analysis of the yeast genome , 2008, Nature Methods.

[8]  G. Cavallaro Genome-wide analysis of eukaryotic twin CX9C proteins. , 2010, Molecular bioSystems.

[9]  J Frank,et al.  The internal compartmentation of rat‐liver mitochondria: Tomographic study using the high‐voltage transmission electron microscope , 1994, Microscopy research and technique.

[10]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[11]  B. Salin,et al.  The Modulation in Subunits e and g Amounts of Yeast ATP Synthase Modifies Mitochondrial Cristae Morphology* , 2004, Journal of Biological Chemistry.

[12]  Y. Bahk,et al.  Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae and influence reproduction and physiology , 2010, Journal of cellular physiology.

[13]  W. Prinz,et al.  Lipid transfer and signaling at organelle contact sites: the tip of the iceberg. , 2011, Current opinion in cell biology.

[14]  S. Uribe-Carvajal,et al.  Structure of Dimeric F1F0-ATP Synthase* , 2010, The Journal of Biological Chemistry.

[15]  W. Neupert,et al.  Atp10p Assists Assembly of Atp6p into the F0 Unit of the Yeast Mitochondrial ATPase* , 2004, Journal of Biological Chemistry.

[16]  Nevan J Krogan,et al.  Epistatic relationships reveal the functional organization of yeast transcription factors , 2010, Molecular systems biology.

[17]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[18]  G. Tusnády,et al.  Principles governing amino acid composition of integral membrane proteins: application to topology prediction. , 1998, Journal of molecular biology.

[19]  Sean R. Collins,et al.  A strategy for extracting and analyzing large-scale quantitative epistatic interaction data , 2006, Genome Biology.

[20]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[21]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[22]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[23]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[24]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[25]  T. Langer,et al.  The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria , 2009, The Journal of cell biology.

[26]  M. Costanzo,et al.  Specific translational activation by nuclear gene products occurs in the 5' untranslated leader of a yeast mitochondrial mRNA. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. M. van der Bliek,et al.  Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage , 2007, The Journal of cell biology.

[28]  D. Chan,et al.  OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L , 2007, The Journal of cell biology.

[29]  T. Langer,et al.  Prohibitins and the functional compartmentalization of mitochondrial membranes , 2009, Journal of Cell Science.

[30]  Vishal M. Gohil,et al.  Synthetic Lethal Interaction of the Mitochondrial Phosphatidylethanolamine and Cardiolipin Biosynthetic Pathways in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[31]  Ron Shamir,et al.  A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking , 2010, Nature Structural &Molecular Biology.

[32]  S. Jakobs,et al.  The m-AAA protease processes cytochrome c peroxidase preferentially at the inner boundary membrane of mitochondria. , 2008, Molecular biology of the cell.

[33]  W. Kühlbrandt,et al.  Dimer ribbons of ATP synthase shape the inner mitochondrial membrane , 2008, The EMBO journal.

[34]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[35]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[36]  T. Langer,et al.  Regulation of mitochondrial phospholipids by Ups1/PRELI‐like proteins depends on proteolysis and Mdm35 , 2010, The EMBO journal.

[37]  Peter Walter,et al.  Supporting Online Material for An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen , 2009 .

[38]  J. McCaffery,et al.  Mitochondrial outer and inner membrane fusion requires a modified carrier protein , 2009, The Journal of cell biology.

[39]  J. Xie,et al.  The mitochondrial inner membrane protein Mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled‐coil‐helix coiled‐coil‐helix domain‐containing protein 3 and 6 and DnaJC11 , 2007, FEBS letters.

[40]  A. M. van der Bliek,et al.  A novel mitochondrial outer membrane protein, MOMA-1, that affects cristae morphology in Caenorhabditis elegans , 2011, Molecular biology of the cell.

[41]  J. Shaevitz,et al.  The structure and function of bacterial actin homologs. , 2010, Cold Spring Harbor perspectives in biology.

[42]  Nevan J Krogan,et al.  Quantitative genetic interaction mapping using the E-MAP approach. , 2010, Methods in enzymology.

[43]  J. McCaffery,et al.  Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. , 2009, Molecular biology of the cell.

[44]  T. Endo,et al.  Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria , 2009, The Journal of cell biology.

[45]  Walter Neupert,et al.  The YTA10–12 Complex, an AAA Protease with Chaperone-like Activity in the Inner Membrane of Mitochondria , 1996, Cell.

[46]  J. McCaffery,et al.  Mitochondrial Fusion Intermediates Revealed in Vitro , 2004, Science.

[47]  G A Perkins,et al.  Recent structural insight into mitochondria gained by microscopy. , 2000, Micron.

[48]  G. Faye,et al.  The MSS51 gene product is required for the translation of the COX1 mRNA in yeast mitochondria , 1990, Molecular and General Genetics MGG.

[49]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[50]  Ashim Malhotra,et al.  Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. , 2011, Biophysical journal.

[51]  Sean R. Collins,et al.  A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. , 2008, Molecular cell.

[52]  T. Langer,et al.  Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. , 2009, Biochimica et biophysica acta.

[53]  A. Reichert,et al.  Dynamic subcompartmentalization of the mitochondrial inner membrane , 2006, The Journal of cell biology.

[54]  M. Iijima,et al.  Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation , 2010, The EMBO journal.

[55]  S. Wilkens,et al.  Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  V. Herzog,et al.  Improved Technique for Electron Microscope Visualization of Yeast Membrane Structure , 2001, Microscopy and Microanalysis.

[57]  T. Langer,et al.  Formation of membrane-bound ring complexes by prohibitins in mitochondria. , 2004, Molecular biology of the cell.

[58]  J. di Rago,et al.  The ATP synthase is involved in generating mitochondrial cristae morphology , 2002, The EMBO journal.

[59]  S. Jakobs,et al.  The inner membrane protein Mdm33 controls mitochondrial morphology in yeast , 2003, The Journal of cell biology.

[60]  M. Duchen,et al.  Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. , 2008, Cell metabolism.

[61]  Walter Neupert,et al.  Prohibitins Regulate Membrane Protein Degradation by the m-AAA Protease in Mitochondria , 1999, Molecular and Cellular Biology.

[62]  S. Jakobs,et al.  Differential protein distributions define two sub‐compartments of the mitochondrial inner membrane in yeast , 2006, FEBS letters.

[63]  Rachel M. Devay,et al.  Mitochondrial Inner-Membrane Fusion and Crista Maintenance Requires the Dynamin-Related GTPase Mgm1 , 2006, Cell.

[64]  Albert Sickmann,et al.  The proteome of Saccharomyces cerevisiae mitochondria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Langer,et al.  Membrane protein turnover by the m‐AAA protease in mitochondria depends on the transmembrane domains of its subunits , 2004, EMBO reports.

[66]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[67]  Olga G. Troyanskaya,et al.  Computationally Driven, Quantitative Experiments Discover Genes Required for Mitochondrial Biogenesis , 2009, PLoS genetics.

[68]  J. Nunnari,et al.  Evidence for a two membrane–spanning autonomous mitochondrial DNA replisome , 2003, The Journal of cell biology.

[69]  E. Rugarli,et al.  OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. , 2007, Molecular biology of the cell.

[70]  J. Yates,et al.  Mgm101p Is a Novel Component of the Mitochondrial Nucleoid That Binds DNA and Is Required for the Repair of Oxidatively Damaged Mitochondrial DNA , 1999, The Journal of cell biology.

[71]  C. Fichter,et al.  Stepwise Assembly of Dimeric F1Fo-ATP Synthase in Mitochondria Involves the Small Fo-Subunits k and i , 2010, Molecular biology of the cell.

[72]  M. L. Greenberg,et al.  The biosynthesis and functional role of cardiolipin. , 2000, Progress in lipid research.

[73]  T. Fox,et al.  PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. , 1987, Genetics.

[74]  S. Ackerman,et al.  ATP10, a yeast nuclear gene required for the assembly of the mitochondrial F1-F0 complex. , 1990, The Journal of biological chemistry.

[75]  S J Young,et al.  Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. , 1997, Journal of structural biology.

[76]  Sean R. Collins,et al.  Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions. , 2006, Methods.

[77]  Mark Ellisman,et al.  New insights into mitochondrial structure during cell death , 2009, Experimental Neurology.

[78]  R. Jagasia,et al.  Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g , 2009, The Journal of cell biology.

[79]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[80]  Grant W. Brown,et al.  Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.

[81]  Li Li,et al.  The mitochondrial inner membrane protein mitofilin controls cristae morphology. , 2005, Molecular biology of the cell.

[82]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[83]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[84]  T. Ideker,et al.  Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae , 2006, Journal of biology.

[85]  P. Rouet,et al.  ApoO, a Novel Apolipoprotein, Is an Original Glycoprotein Up-regulated by Diabetes in Human Heart* , 2006, Journal of Biological Chemistry.

[86]  S. Funes,et al.  Biogenesis of cytochrome oxidase-sophisticated assembly lines in the mitochondrial inner membrane. , 2005, Gene.

[87]  J. Rodríguez-Zavala,et al.  The inhibitor protein (IF1) promotes dimerization of the mitochondrial F1F0-ATP synthase. , 2006, Biochemistry.