All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide

[1]  J. Khurgin,et al.  Absorptive loss and band non-parabolicity as a physical origin of large nonlinearity in epsilon-near-zero materials , 2020, Optical Materials Express.

[2]  Z. Coppens,et al.  Electrodynamics of conductive oxides: Intensity-dependent anisotropy, reconstruction of the effective dielectric constant, and harmonic generation , 2020, 2003.01059.

[3]  V. Shalaev,et al.  Near-zero-index materials for photonics , 2019, Nature Reviews Materials.

[4]  L. Caspani,et al.  Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity , 2019, Optica.

[5]  Wolfgang Porod,et al.  Roadmap on all-optical processing , 2019, Journal of Optics.

[6]  Emmanouil E. Kriezis,et al.  Silicon-Photonic Electro-Optic Phase Modulators Integrating Transparent Conducting Oxides , 2018, IEEE Journal of Quantum Electronics.

[7]  Fan Zhang,et al.  Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator. , 2018, Optics express.

[8]  Q. Gong,et al.  Epsilon‐Near‐Zero Photonics: A New Platform for Integrated Devices , 2018 .

[9]  Ali Adibi,et al.  Hot‐Electron‐Assisted Femtosecond All‐Optical Modulation in Plasmonics , 2018, Advanced materials.

[10]  Jeremy Upham,et al.  Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material , 2018 .

[11]  A. Kildishev,et al.  Dynamic Control of Nanocavities with Tunable Metal Oxides. , 2017, Nano letters.

[12]  Saulius Juodkazis,et al.  Light‐Induced Tuning and Reconfiguration of Nanophotonic Structures , 2017 .

[13]  Shian Zhang,et al.  A Solution‐Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon‐Near‐Zero Medium , 2017, Advanced materials.

[14]  Michael B. Sinclair,et al.  Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber , 2017, Nature Photonics.

[15]  N. Engheta,et al.  Near-zero refractive index photonics , 2017, Nature Photonics.

[16]  R. Boyd,et al.  Beyond the perturbative description of the nonlinear optical response of low-index materials. , 2017, Optics letters.

[17]  J. Ketterson,et al.  Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum , 2016, Nature Communications.

[18]  G. Keeler,et al.  Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers. , 2016, Optics express.

[19]  Robert W. Boyd,et al.  Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region , 2016, Science.

[20]  T. Elsaesser,et al.  Ultrafast Nonlinear Response of Bulk Plasmons in Highly Doped ZnO Layers. , 2015, Physical review letters.

[21]  Zubin Jacob,et al.  Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media , 2015, 1505.06180.

[22]  V. Shalaev,et al.  Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off , 2015, 1503.07832.

[23]  M. A. Vincenti,et al.  Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films , 2015, 1502.04142.

[24]  Arrigo Calzolari,et al.  Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives , 2014 .

[25]  R. Boyd,et al.  Measurement of the complex nonlinear optical response of a surface plasmon-polariton. , 2014, Optics letters.

[26]  J. Hugonin,et al.  Berreman mode and epsilon near zero mode. , 2012, Optics express.

[27]  A. Ciattoni,et al.  All-optical active plasmonic devices with memory and power-switching functionalities based onε-near-zero nonlinear metamaterials , 2011, 1101.2541.

[28]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[29]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[30]  V. Vaicikauskas,et al.  Ultrafast pump-probe surface plasmon resonance spectroscopy of thin gold films. , 2006, Applied optics.

[31]  Hendry. I. Elim,et al.  Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films , 2006, cond-mat/0604652.

[32]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[33]  Manning,et al.  Nonlinear Optics for High-Speed Digital Information Processing. , 1999, Science.

[34]  J. P. Callan,et al.  Three-dimensional optical storage inside transparent materials. , 1996, Optics letters.

[35]  A. Lagendijk,et al.  Ultrashort surface-plasmon and phonon dynamics. , 1988, Physical review letters.

[36]  L. Caspani,et al.  Enhanced Nonlinear Refractive Index in Epsilon-Near-Zero Materials , 2016 .

[37]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .