On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations

We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P$$_I$$I) equation or its fourth-order analogue P$$_I^2$$I2. As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.

[1]  G. Moore Geometry of the string equations , 1990 .

[2]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[3]  Boris Dubrovin,et al.  On Hamiltonian perturbations of hyperbolic systems of conservation laws , 2004 .

[4]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[5]  板橋 清巳 Resonance , 1962 .

[6]  T. Kappeler,et al.  Resonant normal form for even periodic FPU chains , 2007, 0709.2624.

[7]  S. P. Tsarëv THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .

[8]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[9]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[10]  Håvard Berland,et al.  Conservation of phase space properties using exponential integrators on the cubic Schrödinger equation , 2007, J. Comput. Phys..

[11]  Hector D. Ceniceros A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation , 2001 .

[12]  B. Dubrovin,et al.  Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .

[13]  Serge Alinhac,et al.  Blowup for Nonlinear Hyperbolic Equations , 1995 .

[14]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[15]  Stephanos Venakides,et al.  New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .

[16]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[17]  A. Degasperis Multiscale Expansion and Integrability of Dispersive Wave Equations , 2009 .

[18]  Frank Merle,et al.  On universality of blow-up profile for L2 critical nonlinear Schrödinger equation , 2004 .

[19]  Maurice Duits,et al.  Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight , 2006, math/0605201.

[20]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[21]  C. David Levermore,et al.  The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .

[22]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[23]  Boris Dubrovin,et al.  On universality of critical behaviour in the focusing nonlinear Schr\"odinger equation, elliptic umbilic catastrophe and the {\it tritronqu\'ee} solution to the Painlev\'e-I equation , 2007, 0704.0501.

[24]  Boris Dubrovin,et al.  On universality of critical behaviour in Hamiltonian PDEs , 2008, 0804.3790.

[25]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[26]  S. Manakov,et al.  On the dispersionless Kadomtsev–Petviashvili equation in n+1 dimensions: exact solutions, the Cauchy problem for small initial data and wave breaking , 2010, 1001.2134.

[27]  P. Miller,et al.  The semiclassical modified nonlinear Schrodinger equation I: Modulation theory and spectral analysis , 2007, nlin/0702028.

[28]  G. Parisi,et al.  A non-perturbative ambiguity free solution of a string model , 1990 .

[29]  Spyridon Kamvissis,et al.  Long time behavior for the focusing nonlinear schroedinger equation with real spectral singularities , 1996 .

[30]  Metastability and dispersive shock waves in the Fermi–Pasta–Ulam system , 2005, nlin/0511026.

[31]  A Darboux theorem for Hamiltonian operators in the formal calculus of variations , 2000, math/0002164.

[32]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[33]  Hassler Whitney,et al.  Singularities of Mappings of Euclidean Spaces , 1992 .

[34]  Stephanos Venakides,et al.  On the long‐time limit of semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation: Pure radiation case , 2006 .

[35]  M. Gregory Forest,et al.  Geometry and Modulation Theory for the Periodic Nonlinear Schrodinger Equation , 1986 .

[36]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[37]  T. Driscoll A composite Runge-Kutta method for the spectral solution of semilinear PDEs , 2002 .

[38]  C. Klein,et al.  Numerical study of a multiscale expansion of KdV and Camassa-Holm equation , 2007 .

[39]  B. Dubrovin,et al.  On the critical behavior in nonlinear evolutionary PDEs with small viscosity , 2012, 1301.7216.

[40]  G. Benettin,et al.  Time-Scales to Equipartition in the Fermi–Pasta–Ulam Problem: Finite-Size Effects and Thermodynamic Limit , 2011 .

[41]  Boris Dubrovin On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour , 2005 .

[42]  H. Whitney On Singularities of Mappings of Euclidean Spaces. I. Mappings of the Plane Into the Plane , 1955 .

[43]  R. Krasny A study of singularity formation in a vortex sheet by the point-vortex approximation , 1986, Journal of Fluid Mechanics.

[44]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[45]  Brynjulf Owren,et al.  Solving the nonlinear Schrodinger equation using exponential integrators , 2006 .

[46]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[47]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[48]  T. Claeys,et al.  Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models , 2006, math-ph/0607043.

[49]  Andrew J. Majda,et al.  Formation of singularities for wave equations including the nonlinear vibrating string , 1980 .

[50]  P. Sikivie Caustic ring singularity , 1999 .

[51]  You-jin Zhang,et al.  On quasi-triviality and integrability of a class of scalar evolutionary PDEs , 2005, nlin/0510019.

[52]  C. David Levermore,et al.  The Small Dispersion Limit of the Korteweg-deVries Equation. I , 1982 .

[53]  G. El,et al.  Resolution of a shock in hyperbolic systems modified by weak dispersion. , 2005, Chaos.

[54]  Fei-Ran Tian,et al.  A numerical study of the semi-classical limit of the focusing nonlinear Schrödinger equation , 2002 .

[55]  M. Vanlessen,et al.  The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation , 2007 .

[56]  René Thom,et al.  Structural stability and morphogenesis - an outline of a general theory of models , 1977, Advanced book classics.

[57]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[58]  R. Carles On the semi-classical limit for the nonlinear Schrodinger equation , 2006, math/0612518.

[59]  Peter D. Miller,et al.  The N -soliton of the focusing nonlinear SchrÖdinger equation for N large , 2005 .

[60]  E. Grenier,et al.  Semiclassical limit of the nonlinear Schrödinger equation in small time , 1998 .

[61]  A. Debouard,et al.  Analytic Solutions to Nonelliptic Nonlinear Schrödinger Equations , 1993 .

[62]  J. Satsuma,et al.  B Initial Value Problems of One-Dimensional self-Modulation of Nonlinear Waves in Dispersive Media (Part V. Initial Value Problems) , 1975 .

[63]  Boris Dubrovin,et al.  Numerical Study of Breakup in Generalized Korteweg-de Vries and Kawahara Equations , 2010, SIAM J. Appl. Math..

[64]  M. A. Hoefer,et al.  Dark Solitons, Dispersive Shock Waves, and Transverse Instabilities , 2011, Multiscale Model. Simul..

[65]  Nalini Joshi,et al.  On Boutroux's Tritronquée Solutions of the First Painlevé Equation , 2001 .

[66]  Ole Bang,et al.  Theory of nonlocal soliton interaction in nematic liquid crystals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  P. Miller,et al.  The sine-Gordon equation in the Semiclassical limit: Critical behavior near a separatrix , 2011 .

[68]  S. Kuksin PERTURBATION THEORY FOR QUASIPERIODIC SOLUTIONS OF INFINITE-DIMENSIONAL HAMILTONIAN SYSTEMS, AND ITS APPLICATION TO THE KORTEWEG-DE VRIES EQUATION , 1989 .

[69]  Alexander Tovbis,et al.  Asymptotics of Orthogonal Polynomials with Complex Varying Quartic Weight: Global Structure, Critical Point Behavior and the First Painlevé Equation , 2011, 1108.0321.

[70]  C. D. Levermore,et al.  The Generation and Propagation of Oscillations in Dispersive Initial Value Problems and Their Limiting Behavior , 1993 .

[71]  A. Menikoff The existence of unbounded solutions of the korteweg-de vries equation , 1972 .

[72]  C. Klein,et al.  A numerical study of the small dispersion limit of the Korteweg–de Vries equation and asymptotic solutions , 2012, 1202.0962.

[73]  Tom Claeys,et al.  Universality of the Break-up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach , 2008, 0801.2326.

[74]  P. Deift,et al.  Perturbation theory for infinite-dimensional integrable systems on the line. A case study , 2002 .

[75]  M. Slemrod Monotone increasing solutions of the Painlevé 1 equation y″ = y2+x and their role in the stability of the plasma-sheath transition , 2002, European Journal of Applied Mathematics.

[76]  F. Tian On the Initial Value Problem of the Whitham Averaged System , 1994 .

[77]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[78]  P. Miller,et al.  On the semiclassical limit of the focusing nonlinear Schrödinger equation , 1998 .

[79]  Marco Peccianti,et al.  Observation of a gradient catastrophe generating solitons. , 2008, Physical review letters.

[80]  Dario Bambusi,et al.  Resonance, Metastability and Blow up in FPU , 2007 .

[81]  A A Kapaev,et al.  Quasi-linear Stokes phenomenon for the Painlevé first equation , 2004, nlin/0404026.

[82]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[83]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[84]  Guy Metivier,et al.  Remarks on the Well-Posedness of the Nonlinear Cauchy Problem , 2006, math/0611441.

[85]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[86]  Robert Jenkins,et al.  Semiclassical Limit of Focusing NLS for a Family of Square Barrier Initial Data , 2014 .

[87]  Stephanos Venakides,et al.  The Small Dispersion Limit of the Korteweg-De Vries Equation , 1987 .

[88]  L. Alonso,et al.  Regularization of Hele-Shaw flows, multiscaling expansions and the Painleve I equation , 2007, 0710.3731.

[89]  A. B. Datseff On the nonlinear schrödinger equation , 2009 .

[90]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[91]  P. Miller,et al.  The Benjamin-Ono Hierarchy with Asymptotically Reflectionless Initial Data in the Zero-Dispersion Limit , 2011, 1101.0784.

[92]  C. David Levermore,et al.  The Behavior of Solutions of the NLS Equation in the Semiclassical Limit , 1994 .

[93]  P. Gérard Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire , 1993 .

[94]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[95]  Christian Klein,et al.  Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation , 2006 .

[96]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[97]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case , 1979 .

[98]  Giancarlo Ruocco,et al.  Shocks in nonlocal media. , 2007, Physical review letters.

[99]  Deformations of the Monge/Riemann hierarchy and approximately integrable systems , 2002, nlin/0205051.

[100]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[101]  Stephanos Venakides,et al.  On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation , 2004 .

[102]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[103]  Semiclassical Limit for Generalized KdV Equations Before the Gradient Catastrophe , 2011, 1107.0461.

[104]  G. Falqui,et al.  On a Camassa-Holm type equation with two dependent variables , 2005, nlin/0505059.

[105]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[106]  You-jin Zhang,et al.  On Properties of Hamiltonian Structures for a Class of Evolutionary PDEs , 2007, 0711.2599.

[107]  S. Tanveer,et al.  Proof of the Dubrovin conjecture and analysis of the tritronquée solutions of $P_I$ , 2012, 1209.1009.

[108]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[109]  P. Boutroux,et al.  Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite) , 1913 .

[110]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[111]  J. Nathan Kutz,et al.  Numerical simulation of the semi-classical limit of the focusing nonlinear Schrödinger equation , 1999 .

[112]  Percy Deift,et al.  A continuum limit of the Toda lattice , 1998 .

[113]  Vassiliev Viktor Anatolievich,et al.  Singularity theory. I. Dynamical systems. VI , 1998 .

[114]  John F Nye,et al.  The elliptic umbilic diffraction catastrophe , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[115]  Lawrence F. Shampine,et al.  Solving Boundary Value Problems for Ordinary Differential Equations in M atlab with bvp 4 c , 2022 .

[116]  A. M. Ilʹin,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[117]  L. Degiovanni,et al.  On Deformation of Poisson Manifolds of Hydrodynamic Type , 2001, nlin/0103052.

[118]  Seung-Yeop Lee,et al.  Viscous shocks in Hele–Shaw flow and Stokes phenomena of the Painlevé I transcendent , 2010, 1005.0369.

[119]  Y. Kodama,et al.  Obstacles to Asymptotic Integrability , 1997 .

[120]  Carlos E. Kenig,et al.  Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , 2006 .

[121]  Terence Tao,et al.  Why are solitons stable , 2008, 0802.2408.

[122]  F. Tian,et al.  On the Whitham equations for the semiclassical limit of the defocusing nonlinear Schrödinger equation , 1999 .

[123]  A. Arsie,et al.  Integrable viscous conservation laws , 2013, 1301.0950.

[124]  J. Pöschel,et al.  Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .

[125]  D. Kong Formation and propagation of singularities for 2×2 quasilinear hyperbolic systems , 2002 .

[126]  P. Lax,et al.  Dispersive approximations in fluid dynamics , 1991 .

[127]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[128]  Mo-Lin Ge,et al.  Theory of Solitons , 2016 .

[129]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[130]  Weakly nonlinear solutions of equationP12 , 1995 .

[131]  Stephanos Venakides,et al.  Long‐time asymptotics of the nonlinear Schrödinger equation shock problem , 2007 .

[132]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[133]  Y. Tsutsumi L$^2$-Solutions for Nonlinear Schrodinger Equations and Nonlinear Groups , 1985 .

[134]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[135]  C. Klein,et al.  On the tritronquée solutions of P$_I^2$ , 2013, 1306.6161.

[136]  Alexander Tovbis,et al.  Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I , 2010, 1004.1828.

[137]  Tamara Grava,et al.  Mathematik in den Naturwissenschaften Leipzig Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations , 2005 .

[138]  Ovidiu Costin CORRELATION BETWEEN POLE LOCATION AND ASYMPTOTIC BEHAVIOR FOR PAINLEVE I SOLUTIONS , 1997 .

[139]  Stephanos Venakides,et al.  The korteweg-de vries equation with small dispersion: Higher order lax-levermore theory , 1990 .

[140]  小澤 徹,et al.  Nonlinear dispersive equations , 2006 .