Charge dynamics and spin blockade in a hybrid double quantum dot in silicon

Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer because of silicon’s “semiconductor vacuum” character and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability, and scalability. Here, we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum-dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterize the charge dynamics, which reveals a charge T2 of 200 ps and a relaxation time T1 of 100 ns. Additionally, we demonstrate a spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.

[1]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[2]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[3]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[4]  B. Previtali,et al.  A tunable, dual mode field-effect or single electron transistor , 2012, 1201.3760.

[5]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[6]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[7]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[8]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[9]  Charles Tahan,et al.  Electron spin resonance and spin–valley physics in a silicon double quantum dot , 2013, Nature Communications.

[10]  Maud Vinet,et al.  Few-electron edge-state quantum dots in a silicon nanowire field-effect transistor. , 2014, Nano letters.

[11]  T. Kontos,et al.  Mesoscopic admittance of a double quantum dot , 2010, 1011.0386.

[12]  Y. Niquet,et al.  Control of the ionization state of three single donor atoms in silicon , 2014, 1403.1079.

[13]  A. G. Fowler,et al.  Global control and fast solid-state donor electron spin quantum computing , 2005 .

[14]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[15]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[16]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[17]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[18]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[19]  Y. Tokura,et al.  Dephasing due to background charge fluctuations , 2003, cond-mat/0303412.

[20]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[21]  J. Wabnig,et al.  Measuring the complex admittance of a carbon nanotube double quantum dot. , 2011, Physical review letters.

[22]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[25]  Andrew Alves,et al.  Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. , 2009, Nano letters.

[26]  M. Vinet,et al.  Radio-frequency dispersive detection of donor atoms in a field-effect transistor , 2013, 1312.3363.

[27]  M Jurczak,et al.  Transport spectroscopy of a single dopant in a gated silicon nanowire. , 2006, Physical review letters.

[28]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[29]  M. F. Gonzalez-Zalba,et al.  Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor. , 2015, Nano letters.

[30]  Zhan Shi,et al.  Coherent quantum oscillations and echo measurements of a Si charge qubit , 2013 .

[31]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[32]  A. Ferguson,et al.  A hybrid double-dot in silicon , 2011, 1111.4406.

[33]  A. Gossard,et al.  Manipulation of a single charge in a double quantum dot. , 2004, Physical review letters.

[34]  D. Ritchie,et al.  Charge and spin state readout of a double quantum dot coupled to a resonator. , 2010, Nano letters.

[35]  Eugene E. Haller,et al.  Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.

[36]  S. Das Sarma,et al.  Silicon quantum computation based on magnetic dipolar coupling (6 pages) , 2003, cond-mat/0311403.

[37]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[38]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[39]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[40]  J. Jefferson,et al.  Coherent and passive one dimensional quantum memory , 2012, 1208.4828.

[41]  M. F. Gonzalez-Zalba,et al.  Probing the limits of gate-based charge sensing , 2015, Nature Communications.

[42]  Andrea Morello,et al.  Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions , 2013, 1312.2197.

[43]  X Jehl,et al.  Coherent coupling of two dopants in a silicon nanowire probed by Landau-Zener-Stückelberg interferometry. , 2013, Physical review letters.

[44]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[45]  J. Petta,et al.  Radio frequency charge parity meter. , 2012, Physical review letters.