Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes

Ternary Ag/MnO2/PANI (silver/manganese oxide/polyaniline) nanocomposite thin films were synthesized for supercapacitor applications using a new synthetic strategy including a pulsed potential electrodeposition technique. The agglomerated nanoscale-vermicular-like structure of the pure PANI is converted into more uniform vermicular morphology containing Ag and MnO2. The electrochemical supercapacitor properties of the ternary nanocomposite films are investigated in a 0.5 M LiClO4 + PC electrolyte. The current density of the Ag/MnO2/PANI nanocomposite film obtained from the CV (cyclic voltammogram) is much higher than that of the pure PANI. Furthermore, the specific capacitance of the ternary Ag/MnO2/PANI nanocomposite is calculated to be 621 F/g and 800 F/g from CV and CD (charge–discharge) measurements, respectively. The cycling stability of the ternary nanocomposites (as high as ∼83%) is significantly enhanced compared to that of a pure PANI (∼66%) sample.

[1]  J. Zou,et al.  Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors , 2011 .

[2]  P. Tamilarasan,et al.  Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte , 2013 .

[3]  Jian Xu,et al.  Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode , 2012 .

[4]  S. Pawar,et al.  Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors , 2011 .

[5]  Gengchao Wang,et al.  Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance , 2013 .

[6]  Xiao‐Qing Yang,et al.  Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications , 2008 .

[7]  Hao Jiang,et al.  Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors , 2012 .

[8]  Yi Cui,et al.  Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. , 2011, Nano letters.

[9]  S. Seal,et al.  Multiwall carbon nanotube-poly(4-styrenesulfonic acid) supported polypyrrole/manganese oxide nano-composites for high performance electrochemical electrodes , 2010 .

[10]  Chan‐Jin Park,et al.  Electrochemical characteristics of two-dimensional nano-structured MnO2 for symmetric supercapacitor , 2013 .

[11]  L. Zhai,et al.  Multiwall carbon nanotube supported poly(3,4-ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors , 2009 .

[12]  Yat Li,et al.  Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles , 2010 .

[13]  D. Dubal,et al.  All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte , 2013 .

[14]  Hao Jiang,et al.  Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances , 2012 .

[15]  D. B. Talange,et al.  Development, modeling and characterization of aqueous metal oxide based supercapacitor , 2012 .

[16]  P. Xiong,et al.  Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors , 2014 .

[17]  M. Sawangphruk,et al.  Direct electrodeposition and superior pseudocapacitive property of ultrahigh porous silver-incorporated polyaniline films , 2012 .

[18]  Ran Liu,et al.  Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. , 2010, ACS nano.

[19]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[20]  Hui Dou,et al.  Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors , 2012 .

[21]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[22]  F. Kang,et al.  Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors , 2012 .

[23]  Yong Zhao,et al.  ZnO-template-mediated synthesis of three-dimensional coral-like MnO2 nanostructure for supercapacitors , 2013 .

[24]  Nengqin Jia,et al.  Sandwiched nanoarchitecture of reduced graphene oxide/ZnO nanorods/reduced graphene oxide on flexible PET substrate for supercapacitor , 2011 .

[25]  Feiyu Kang,et al.  Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors , 2012 .

[26]  V. Pavlínek,et al.  Fabrication of polyaniline/mesoporous carbon/MnO2 ternary nanocomposites and their enhanced electrochemical performance for supercapacitors , 2012 .

[27]  Xiaogang Zhang,et al.  Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes , 2008 .

[28]  Wen‐Cui Li,et al.  Dual functions of activated carbon in a positive electrode for MnO 2-based hybrid supercapacitor , 2011 .

[29]  Emilia Morallón,et al.  Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods , 2013 .

[30]  R. Devan,et al.  Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. , 2012, Physical chemistry chemical physics : PCCP.

[31]  Yi Jia,et al.  In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core–shell structured materials for supercapacitors , 2012 .