Potential Roles of Artificial Intelligence in the LCI of Renewable Energy Systems

[1]  Frieder Rubik,et al.  Life Cycle Assessment in Industry and Business , 2000 .

[2]  Paul Gray,et al.  Present and future directions in data warehousing , 1998, DATB.

[3]  Charles Mbohwa Life Cycle Assessment of a Coal-fired Old Thermal Power Plant , 2013 .

[4]  Martin Pehnt,et al.  Dynamic life cycle assessment (LCA) of renewable energy technologies , 2006 .

[5]  D. Dávalos,et al.  Solar Might not Always be a Green Source of Energy , 2016 .

[6]  Richard K. Helling,et al.  The Role of LCA in Sustainable Development , 2017 .

[7]  V. R. Vasquez,et al.  Life cycle analysis of geothermal energy for power and transportation: A stochastic approach , 2018 .

[8]  K. Chau,et al.  Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. , 2018, The Science of the total environment.

[9]  S. Mohan,et al.  Data-mining models for water resource applications , 2013 .

[10]  James A. Fava LCA: Concept, Methodology, or Strategy? , 1997 .

[11]  George Lawton The Next Big Thing in Chipmaking , 2007, Computer.

[12]  Felix Adedayo Ishola,et al.  Competitive advantage of carbon efficient supply chain in manufacturing industry , 2019, Journal of Cleaner Production.

[13]  Hiromi Kubota,et al.  Life Cycle Assessment of a Pulverized Coal-fired Power Plant with CCS Technology in Japan , 2014 .

[14]  Jonathan Wilkins Is artificial intelligence a help or hindrance? , 2018, Netw. Secur..

[15]  Paul A. Adedeji,et al.  Estimation of Municipal Solid Waste (MSW) combustion enthalpy for energy recovery , 2019, EAI Endorsed Trans. Energy Web.

[16]  O. Olatunji,et al.  Drivers and barriers to competitive carbon footprint reduction in manufacturing supply chain: a brief review , 2019, Procedia Manufacturing.

[17]  Teodora Sanislav,et al.  APPLICATION OF DATA MINING TECHNIQUES TO IMPROVE A SCADA SYSTEM'S PERFORMANCE , 2007 .

[18]  Juan Romo,et al.  Data learning from big data , 2018 .

[19]  N. Madushele,et al.  Plausibility of assessing environmental impacts of a domestic biogas digester in the design stage , 2019, Environmental Progress & Sustainable Energy.

[20]  Kimberly Merritt Data Warehousing and the Internet , 2002 .

[21]  Richard J. Wallace,et al.  A New Approach to Optimization with Life Cycle Assessment: Combining Optimization with Detailed Process Simulation , 2014, ICCSA.

[22]  Stig Irving Olsen,et al.  Importance of Life Cycle Assessment of Renewable Energy Sources , 2013 .

[23]  Paul A. Adedeji,et al.  Non-linear autoregressive neural network (NARNET) with SSA filtering for a university energy consumption forecast , 2019, Procedia Manufacturing.

[24]  W. Laurance,et al.  How Green is 'Green' Energy? , 2017, Trends in ecology & evolution.

[25]  E. Hertwich,et al.  A decision-analytic framework for impact assessment part I: LCA and decision analysis , 2001 .

[26]  A. Kazimierczuk,et al.  Wind energy in Kenya: A status and policy framework review , 2019, Renewable and Sustainable Energy Reviews.

[27]  Hadi Salehi,et al.  Emerging artificial intelligence methods in structural engineering , 2018, Engineering Structures.

[28]  Israel Dunmade,et al.  Lifecycle assessment of a stapling machine , 2014 .

[29]  Yubao Chen,et al.  Integrated and Intelligent Manufacturing: Perspectives and Enablers , 2017 .

[30]  Ildo Luis Sauer,et al.  LCA data quality: A management science perspective , 2017 .

[31]  O. Olatunji,et al.  Estimation of the Elemental Composition of Biomass Using Hybrid Adaptive Neuro-Fuzzy Inference System , 2019, BioEnergy Research.

[32]  Jonas Pagh Jensen,et al.  Evaluating the environmental impacts of recycling wind turbines , 2018, Wind Energy.