Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer

Abstract A reduced variational space method is presented for analyzing hydrogen bonding interactions in terms of Coulomb and exchange, polarizability, and charge-transfer components. The method relies on the use of SCF optimized monomer orbitais in dimer calculations in which the wavefunction of one monomer is held frozen while the other is optimized with a basis set including selected subsets of the unoccupied monomer orbitals. Freezing the monomer wavefunctions allows the polarizability and charge-transfer interactions to be ascribed to specific monomers. Applications are presented for the interaction energy and dipole moment of the water dimer.

[1]  Steve Scheiner,et al.  Theoretical study of H2O–HF and H2O–HCl: Comparison with experiment , 1984 .

[2]  G. T. Fraser,et al.  Rotational spectrum and structure of the complex HCNCO2 , 1984 .

[3]  Patrick W. Fowler,et al.  A model for the geometries of Van der Waals complexes , 1985 .

[4]  K. I. Peterson,et al.  Structure and internal rotation of H2O–CO2, HDO–CO2, and D2O–CO2 van der Waals complexes , 1984 .

[5]  A. Stone,et al.  Matrix elements between determinantal wavefunctions of non-orthogonal orbitals , 1984 .

[6]  S. Novick,et al.  Hydrogen bonding: The structure of HF–HCl , 1977 .

[7]  P. Kollman,et al.  An SCF partitioning scheme for the hydrogen bond , 1970 .

[8]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[9]  W. Klemperer,et al.  Determination of the structure of ArCO2 by radio frequency and microwave spectroscopy , 1979 .

[10]  G. T. Fraser,et al.  The rotational spectrum, internal rotation, and structure of NH3–CO2 , 1984 .

[11]  F. Baiocchi,et al.  The rotational and hyperfine spectrum and structure of H2CO–HF2 , 1983 .

[12]  Michel Dupuis,et al.  Molecular symmetry. II. Gradient of electronic energy with respect to nuclear coordinates , 1978 .

[13]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[14]  E. J. Campbell,et al.  A new method for observing the rotational spectra of weak molecular complexes: KrHCl , 1979 .

[15]  H. Schaefer,et al.  Extensive theoretical studies of the hydrogen‐bonded complexes (H2O)2, (H2O)2H+, (HF)2, (HF)2H+, F2H−, and (NH3)2 , 1986 .

[16]  C. E. Dykstra,et al.  Improved counterpoise corrections for the abinitio calculation of hydrogen bonding interactions , 1986 .

[17]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[18]  Alistair P. Rendell,et al.  The validity of electrostatic predictions of the shapes of van der Waals dimers , 1985 .

[19]  A. Stone,et al.  Intermolecular perturbation theory , 1984 .

[20]  Paul S. Bagus,et al.  A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3 , 1984 .

[21]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[22]  Patrick W. Fowler,et al.  Do electrostatic interactions predict structures of van der Waals molecules , 1983 .

[23]  Frank Weinhold,et al.  Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of , 1986 .

[24]  U. Singh,et al.  A water dimer potential based on ab initio calculations using Morokuma component analyses , 1985 .

[25]  Henry Margenau,et al.  Van der waals forces , 1939 .

[26]  T. R. Dyke,et al.  Partially deuterated water dimers: Microwave spectra and structure , 1980 .

[27]  C. E. Dykstra,et al.  Electrical influence on monomer orientation in hydrogen bonded and other weakly bonded complexes , 1986 .

[28]  A. Legon PULSED-NOZZLE, FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF WEAKLY BOUND DIMERS , 1983 .

[29]  K. Morokuma,et al.  Molecular orbital studies of hydrogen bonds. IX. Electron distribution analysis , 1975 .

[30]  W. Fink Approach to Partially Predetermining Molecular Electronic Structure. The Li He Interaction Potential , 1972 .

[31]  William J. Meath,et al.  Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O , 1977 .

[32]  M. Dreyfus,et al.  A non-empirical study of the hydrogen bond between peptide units , 1970 .

[33]  W. Klemperer,et al.  Radiofrequency and Microwave Spectrum of the Hydrogen Fluoride Dimer; a Nonrigid Molecule , 1972 .

[34]  John S. Muenter,et al.  THE STRUCTURE OF WATER DIMER FROM MOLECULAR BEAM ELECTRIC RESONANCE SPECTROSCOPY: PARTIALLY DEUTERATED DIMERS , 1977 .

[35]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .