The SERS response of semiordered Ag nanorod arrays fabricated by template oblique angle deposition

Semiordered Ag nanorod arrays are fabricated by template oblique angle deposition (OAD) using regular Au nano-post arrays with different diameters as seed patterns. The Au nano-post arrays do not give an observable surface-enhanced Raman scattering (SERS) activity under our detection configuration, whereas the patterned Ag nanorod arrays can produce a very strong SERS signal. These SERS intensities increase monotonically with the decrease in the diameter and separation of the Ag nanorods, which demonstrates that one can improve the SERS detection by tuning the diameter and separation of the Ag nanorods, and the template OAD method can help produce more uniform, reproducible, and sensitive Ag nanorod SERS substrates. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Lingfeng Shi,et al.  SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template , 2008 .

[2]  R. Goodacre,et al.  Discrimination of bacteria using surface-enhanced Raman spectroscopy. , 2004, Analytical chemistry.

[3]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[4]  Y. Mo,et al.  The influence of surface roughness on the Raman scattering of pyridine on copper and silver surfaces , 1984 .

[5]  Yiping Zhao,et al.  The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface Enhanced Raman Scattering Substrates , 2008 .

[6]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman Scattering (SERS) method and instrumentation for genomics and biomedical analysis , 1999 .

[7]  Yiping Zhao,et al.  Revisiting the separation dependent surface enhanced Raman scattering , 2008 .

[8]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[9]  Keith T. Carron,et al.  A surface enhanced Raman spectroscopy study of the corrosion-inhibiting properties of benzimidazole and benzotriazole on copper , 1991 .

[10]  A. Materny,et al.  Surface enhanced Raman scattering (SERS)—a quantitative analytical tool? , 2006 .

[11]  T Motohiro,et al.  Thin film retardation plate by oblique deposition. , 1989, Applied optics.

[12]  NIELS O. YOUNG,et al.  Optically Active Fluorite Films , 1959, Nature.

[13]  Franz R. Aussenegg,et al.  Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .

[14]  Yiping Zhao,et al.  The effect of layer absorbance for complex surface enhanced Raman scattering substrates , 2009 .

[15]  M. Brett,et al.  Fabrication of submicrometer regular arrays of pillars and helices , 1999 .

[16]  R. C. Picu,et al.  Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation , 2005 .

[17]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[18]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[19]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[20]  Toshiaki Kondo,et al.  Surface-enhanced Raman Scattering on Ordered Gold Nanodot Arrays Prepared from Anodic Porous Alumina Mask , 2008 .

[21]  Kevin Robbie,et al.  Fabrication of thin films with highly porous microstructures , 1995 .

[22]  T. Cotton,et al.  Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity. , 1991, Analytical chemistry.

[23]  Richard A. Dluhy,et al.  Surface Enhanced Raman Scattering from an Ag Nanorod Array Substrate: The Site Dependent Enhancement and Layer Absorbance Effect , 2009 .

[24]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[25]  Janina Kneipp,et al.  In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. , 2006, Nano letters.

[26]  H. Leamy,et al.  Columnar microstructure in vapor-deposited thin films , 1977 .

[27]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[28]  Ramasamy Manoharan,et al.  Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS) , 1998 .

[29]  Luca Dal Negro,et al.  Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). , 2009, Optics express.

[30]  Toh-Ming Lu,et al.  Novel Nano-Column and Nano-Flower Arrays by Glancing Angle Deposition , 2002 .

[31]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[32]  B. Wilson,et al.  Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications , 1997 .

[33]  Yingzhou Huang,et al.  Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. , 2008, Nano letters.

[34]  Qiuming Yu,et al.  Probing the protein orientation on charged self-assembled monolayers on gold nanohole arrays by SERS. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[35]  Yiping Zhao,et al.  Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates , 2005 .

[36]  Edgar Voges,et al.  Periodically structured metallic substrates for SERS , 1998 .

[37]  A. Materny,et al.  Nanostructured gold surfaces as reproducible substrates for surface‐enhanced Raman spectroscopy , 2007 .

[38]  Yiping Zhao,et al.  A high sensitive fiber SERS probe based on silver nanorod arrays. , 2007, Optics express.

[39]  Olga Lyandres,et al.  Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. , 2005, Journal of the American Chemical Society.

[40]  Y. Zhao,et al.  The role of the nanospine in the nanocomb arrays for surface enhanced Raman scattering , 2009 .

[41]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[42]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[43]  Yiping Zhao,et al.  Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates , 2008 .

[44]  S. B. Chaney,et al.  Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. , 2006, The journal of physical chemistry. B.

[45]  Michael J. Brett,et al.  Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films , 2007 .

[46]  S. B. Chaney,et al.  Anomalous polarized absorbance spectra of aligned Ag nanorod arrays , 2006 .

[47]  George C. Schatz,et al.  A surface‐enhanced hyper‐Raman and surface‐enhanced Raman scattering study of trans‐1,2‐bis(4‐pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory , 1996 .

[48]  Dongsheng Xu,et al.  Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[49]  Dong Qin,et al.  Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. , 2008, Nano letters.

[50]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[51]  Yiping Zhao,et al.  Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. , 2006, Nano letters.