Controllable Delamination of CNT-Reinforced Carbon Fiber Films by Harnessing Mechanical and Topological Characteristics of the Composites

[1]  Huawei Zou,et al.  Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field , 2022, Composites Part A: Applied Science and Manufacturing.

[2]  Jia‐mei Lai,et al.  Effect of Stitching, Stitch Density, Stacking Sequences on Low-Velocity Edge Impact and Compression after Edge Impact (CAEI) Behavior of Stitched CFRP Laminates , 2022, Materials.

[3]  Min Li,et al.  Balance interlaminar improvement and in-plane adverse impact of hexagonal semi-embedded fine Z-pin reinforced polymer composite , 2022, Journal of Materials Research and Technology.

[4]  S. Bai,et al.  Structural Optimization Design of CFRP with Ultrahigh In-plane Thermal Conductivity and Mechanical Strength , 2022, Composites Part A: Applied Science and Manufacturing.

[5]  Yujie Chen,et al.  The Effect of Internal Delamination Damage on the Tensile Strength of Aeronautical Composites , 2022, Acta Mechanica Solida Sinica.

[6]  Y. Wielhorski,et al.  Numerical modeling of 3D woven composite reinforcements: A review , 2021, Composites Part A: Applied Science and Manufacturing.

[7]  B. Zhang,et al.  Nonlinear Bending Analysis of Functionally Graded CNT-Reinforced Shallow Arches Placed on Elastic Foundations , 2020, Acta Mechanica Solida Sinica.

[8]  L. Gorbatikh,et al.  Enhancing Strength and Toughness of Hierarchical Composites through Optimization of Position and Orientation of Nanotubes: A Computational Study , 2020, Journal of Composites Science.

[9]  F. Aymerich,et al.  Effect of Z-pinning on the impact resistance of composite laminates with different layups , 2018, Composites Part A: Applied Science and Manufacturing.

[10]  Xusheng Du,et al.  An Analytical Model of Interlaminar Fracture of Polymer Composite Reinforced by Carbon Fibres Grafted with Carbon Nanotubes , 2018, Polymers.

[11]  Yan Li,et al.  An overview of structural-functional-integrated composites based on the hierarchical microstructures of plant fibers , 2018, Advanced Composites and Hybrid Materials.

[12]  Md. Jahangir Hossain,et al.  A Comparative Study on Fourth Order and Butcher’s Fifth Order Runge-Kutta Methods with Third Order Initial Value Problem (IVP) , 2017 .

[13]  Y. Mai,et al.  Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves , 2017 .

[14]  C. Bakis,et al.  Effect of nanofiller length and orientation distributions on Mode I fracture toughness of unidirectional fiber composites , 2016 .

[15]  S. Raja,et al.  Effective Moduli Evaluation of Carbon Nanotube Reinforced Polymers Using Micromechanics , 2015 .

[16]  A. Boyano,et al.  A new approach for determining the R-curve in DCB tests without optical measurements , 2015 .

[17]  E. Zussman,et al.  Mode I and Mode II fracture energy of MWCNT reinforced nanofibrilmats interleaved carbon/epoxy laminates , 2014 .

[18]  Xiaodong He,et al.  Theoretical prediction and experimental verification of pulling carbon nanotubes from carbon fiber prepared by chemical grafting method , 2013 .

[19]  Xiaodong He,et al.  Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber , 2012 .

[20]  Brian L. Wardle,et al.  Limiting Mechanisms of Mode I Interlaminar Toughening of Composites Reinforced with Aligned Carbon Nanotubes , 2009 .

[21]  David Hui,et al.  On the effective elastic moduli of carbon nanotubes for nanocomposite structures , 2004 .

[22]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[23]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[24]  B. Wardle,et al.  Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes , 2010 .