Ices on the Satellites of Jupiter, Saturn, and Uranus

Three satellites of Jupiter, seven satellites of Saturn, and five satellites of Uranus show spectroscopic evidence of H 2 O ice on their surfaces, although other details of their surfaces are highly diverse. The icy surfaces contain contaminants of unknown composition in varying degrees of concentration, resulting in coloration and large differences in albedo. In addition to H 2 O, Europa has frozen SO 2, and Ganymede has O2 in the surface; in both of these cases external causes are implicated in the deposition or formation of these trace components. Similarly O3 is found in the surface ices of Ganymede, Dione, and Rhea, probably induced by the effects of magnetospheric particles. Variations in ice exposure across the surfaces of the satellites are measured from the spectroscopic signatures. While H 2 O ice occurs on the surfaces of many satellites, the range of bulk densities of these bodies shows that its contribution to their overall compositions is highly variable from one object to another.

[1]  J. Bell,et al.  Uranus satellites: surface properties , 1991 .

[2]  T. Owen,et al.  Surface ices in the outer solar system , 2008 .

[3]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[4]  B. Buratti The Dark Side of Iapetus: Additional Evidence for an Exogenous Origin , 1995 .

[5]  L A Young,et al.  Surface Ices and the Atmospheric Composition of Pluto , 1993, Science.

[6]  E. Karkoschka Rings and Satellites of Uranus: Colorful and Not So Dark☆☆☆ , 1997 .

[7]  R. E. Johnson,et al.  Detection of ozone on Saturn's satellites Rhea and Dione , 1997, Nature.

[8]  J. Veverka,et al.  Albedo dichotomy of Rhea - Hapke analysis of Voyager photometry , 1989 .

[9]  Robert H. Brown The Uranian satellites and Hyperion - New spectrophotometry and compositional implications , 1983 .

[10]  J. Veverka,et al.  Hyperion: Analysis of Voyager observations , 1985 .

[11]  W. R. Thompson,et al.  Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system. , 1987, Journal of geophysical research.

[12]  D. Cruikshank Near-infrared studies of the satellites of Saturn and Uranus , 1980 .

[13]  J. Bell,et al.  Visible spectral reflectance measurements (0.33–1.1 μm) of the Galilean satellites at many orbital phase angles , 1980 .

[14]  D. Cruikshank,et al.  Determination of the composition and state of icy surfaces in the outer solar system , 1997 .

[15]  Ted L. Roush,et al.  Charon: More than Water Ice? , 1994 .

[16]  R. Clark,et al.  Search for volatiles on icy satellites: I. Europa , 1988 .

[17]  D. Tholen,et al.  Eight-color photometry of Hyperion, Iapetus, and Phoebe , 1983 .

[18]  R. West,et al.  Voyager 2 Photopolarimeter observations of the Uranian satellites , 1987 .

[19]  R. E. Johnson,et al.  Effects of charged particles on the surfaces of the satellites of Uranus , 1987 .

[20]  Keith S. Noll,et al.  The albedo spectrum of Europa from 2200 Å to 3300 Å , 1995 .

[21]  Dale P. Cruikshank,et al.  Satellites of Uranus and Neptune, and the Pluto-Charon system , 1986 .

[22]  R. Clark,et al.  Spectral properties of ice‐particulate mixtures and implications for remote sensing: 1. Intimate mixtures , 1984 .

[23]  B. Hapke Combined theory of reflectance and emittance spectroscopy , 1995 .

[24]  L. Lebofsky,et al.  2.7- to 4.1-μm spectrophotometry of icy satellites of Saturn and Jupiter , 1985 .

[25]  T. Owen,et al.  Ices on the Surface of Triton , 1993, Science.

[26]  J. Veverka,et al.  Satellites of Uranus: Disk-integrated photometry from Voyager imaging observations , 1987 .

[27]  Bonnie J. Buratti,et al.  Surficial textures of the Galilean satellites , 1988, Nature.

[28]  D. Cruikshank,et al.  The Uranian satellites - Surface compositions and opposition brightness surges , 1983 .

[29]  D. Stevenson,et al.  Volcanism and igneous processes in small icy satellites , 1982, Nature.

[30]  R. L. Millis,et al.  UBV photometry of the Galilean satellites , 1975 .

[31]  B. Buratti,et al.  Surface properties and photometry of the Uranian satellites , 1990 .

[32]  Bradford A. Smith,et al.  Satellites of Saturn - Geological perspective , 1984 .

[33]  David Morrison,et al.  Satellites of Jupiter , 1982 .

[34]  J. Caldwell,et al.  Detection of SO2 on Callisto with the Hubble Space Telescope , 1997 .

[35]  C. Sagan,et al.  SPECTROPHOTOMETRY AND ORGANIC MATTER ON IAPETUS. 2 : MODELS OF INTERHEMISPHERIC ASYMMETRY , 1996 .

[36]  J. Bell,et al.  The composition and origin of the Iapetus dark material , 1985 .

[37]  G. Kuiper Infrared observations of planets and satellites , 1957 .

[38]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[39]  Robert E. Johnson,et al.  The effect of magnetospheric ion bombardment on the reflectance of Europa's surface , 1992 .

[40]  J. Pollack,et al.  Ice and minerals on Callisto - A reassessment of the reflectance spectra , 1990 .

[41]  Robert M. Nelson,et al.  Evidence for sulphur implantation in Europa's UV absorption band , 1981, Nature.

[42]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[43]  R. H. Brown,et al.  Diameters and albedos of satellites of Uranus , 1982, Nature.

[44]  C. Sagan,et al.  Spectrophotometry and organic matter on Iapetus. 1. Composition models. , 1995, Journal of geophysical research.

[45]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[46]  R E Johnson,et al.  Detection of Ozone on Ganymede , 1996, Science.

[47]  W. Calvin,et al.  O2 on Ganymede: Spectral characteristics and plasma formation mechanisms , 1996 .

[48]  R. Clark,et al.  Modeling the reflectance spectrum of Callisto 0.25 to 4.1 μm , 1991 .

[49]  J. Jenkins,et al.  Laboratory measurements of the microwave opacity of gaseous Ammonia (NH3) under simulated conditions for the Jovian atmosphere , 1986 .

[50]  R. Clark,et al.  Spectra of the icy Galilean satellites from 0.2 to 5μm: A compilation, new observations, and a recent summary , 1995 .

[51]  J. Veverka,et al.  Miranda - Color and albedo variations from Voyager photometry , 1989 .

[52]  B. Buratti,et al.  Albedo and color maps of the Saturnian satellites , 1990 .

[53]  T. Owen The satellites of Saturn. , 1996 .

[54]  D. W. Strecker,et al.  Near-infrared spectra of the Galilean satellites - Observations and compositional implications , 1978 .

[55]  J. Veverka,et al.  Satellites of Saturn - Optical properties , 1984 .

[56]  A. Barbe,et al.  Identification of Three Absorption Bands in the 2-μm Spectrum of Io , 1994 .

[57]  B. Buratti,et al.  Spectral geometric albedos of the Galilean satellites from 0.24 to 0.34 micrometers - Observations with the International Ultraviolet Explorer , 1987 .

[58]  D. T. Thompson,et al.  Europa's phase curve: Implications for surface structure , 1991 .

[59]  C. Sagan,et al.  The organic surface of 5145 Pholus: constraints set by scattering theory. , 1993, Icarus.

[60]  Robert H. Brown,et al.  The Uranian satellites: Water ice on Ariel and Umbriel , 1981 .

[61]  John R. Spencer,et al.  Charge‐coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede , 1995 .

[62]  Bonnie J. Buratti,et al.  Ganymede and Callisto - Surface textural dichotomies and photometric analysis , 1991 .

[63]  K. Noll,et al.  Titan: 1-5 μm photometry and spectrophotometry and a search for variability , 1993 .

[64]  G. Neugebauer,et al.  Near-infrared spectrophotometry of the satellites and rings of Uranus , 1981 .

[65]  R. Clark,et al.  Saturn's satellites: Nuar-infrared spectrophotometry (0.6–2.5 μm) of the leading and trailing sides and compositional implications , 1984 .

[66]  Joseph M. Prospero,et al.  Nitrate, non-sea-salt sulfate, and mineral aerosol over the northwestern Indian Ocean , 1987 .

[67]  R. Clark,et al.  Surface of Miranda - Identification of water ice , 1984 .

[68]  R. Nelson,et al.  Europa's ultraviolet absorption band (260 to 320 nm): Temporal and spatial evidence from IUE , 1987 .