Nanoscale InGaSb heterostructure membranes on Si substrates for high hole mobility transistors.

As of yet, III-V p-type field-effect transistors (p-FETs) on Si have not been reported, due partly to materials and processing challenges, presenting an important bottleneck in the development of complementary III-V electronics. Here, we report the first high-mobility III-V p-FET on Si, enabled by the epitaxial layer transfer of InGaSb heterostructures with nanoscale thicknesses. Importantly, the use of ultrathin (thickness, ~2.5 nm) InAs cladding layers results in drastic performance enhancements arising from (i) surface passivation of the InGaSb channel, (ii) mobility enhancement due to the confinement of holes in InGaSb, and (iii) low-resistance, dopant-free contacts due to the type III band alignment of the heterojunction. The fabricated p-FETs display a peak effective mobility of ~820 cm(2)/(V s) for holes with a subthreshold swing of ~130 mV/decade. The results present an important advance in the field of III-V electronics.

[1]  A. Javey,et al.  Nanoscale Semiconductor “X” on Substrate “Y” – Processes, Devices, and Applications , 2011, Advanced materials.

[2]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[3]  A. Javey,et al.  Formation and characterization of NixInAs/InAs nanowire heterostructures by solid source reaction. , 2008, Nano letters.

[4]  M. Heyns,et al.  Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials , 2009 .

[5]  P. Ye,et al.  GaSb Inversion-Mode PMOSFETs With Atomic-Layer-Deposited $\hbox{Al}_{2}\hbox{O}_{3}$ as Gate Dielectric , 2011, IEEE Electron Device Letters.

[7]  John A. Rogers Electronics: A diverse printed future , 2010, Nature.

[8]  N. Sugiyama,et al.  Electron and hole mobility enhancement in strained-Si MOSFET's on SiGe-on-insulator substrates fabricated by SIMOX technology , 2000, IEEE Electron Device Letters.

[9]  H. Yonezu Control of structural defects in group III–V–N alloys grown on Si , 2002 .

[10]  M. Takenaka,et al.  III-V-semiconductor-on-insulator n-channel metal-insulator-semiconductor field-effect transistors with buried Al2O3 layers and sulfur passivation: Reduction in carrier scattering at the bottom interface , 2010 .

[11]  Diana L. Huffaker,et al.  Room-temperature optically-pumped GaSb quantum well based VCSEL monolithically grown on Si (100) substrate , 2005 .

[12]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[13]  J. B. Boos,et al.  Hole mobility enhancement in In0.41Ga0.59Sb quantum-well field-effect transistors , 2011 .

[14]  M. Amann,et al.  Ultra-low resistive GaSb/InAs tunnel junctions , 2011 .

[15]  Elena Plis,et al.  Ultrathin body InAs tunneling field-effect transistors on Si substrates , 2011 .

[16]  E. H. Nicollian,et al.  MOS STUDY OF INTERFACE‐STATE TIME CONSTANT DISPERSION , 1967 .

[17]  H. Bechtel,et al.  Quantum confinement effects in nanoscale-thickness InAs membranes. , 2011, Nano letters.

[18]  John A Rogers,et al.  Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting , 2011, Proceedings of the National Academy of Sciences.

[19]  J. B. Boos,et al.  Mobility enhancement in strained p-InGaSb quantum wells , 2007 .

[20]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[21]  F. Xia,et al.  The origins and limits of metal-graphene junction resistance. , 2011, Nature nanotechnology.

[22]  Dae-Hyun Kim,et al.  Scalability of Sub-100 nm InAs HEMTs on InP Substrate for Future Logic Applications , 2010, IEEE Transactions on Electron Devices.

[23]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[24]  Denis Flandre,et al.  Subthreshold slope of long-channel accumulation-mode p-channel SOI MOSFETs , 1994 .

[25]  J. B. Boos,et al.  Optimization of the $\hbox{Al}_{2}\hbox{O}_{3}/ \hbox{GaSb}$ Interface and a High-Mobility GaSb pMOSFET , 2011, IEEE Transactions on Electron Devices.