Computable Error Estimates for Ground State Solution of Bose-Einstein Condensates

In this paper, we propose a computable error estimate of the Gross–Pitaevskii equation for the ground state solution of the Bose–Einstein condensate by the general conforming finite element method on general meshes. Based on this error estimate, the asymptotically lower and upper bound for the smallest eigenvalue and ground state energy can be calculated. Several numerical examples are presented to validate the theoretical results in this paper.

[1]  Y. Maday,et al.  A posteriori analysis of a nonlinear Gross–Pitaevskii-type eigenvalue problem , 2017 .

[2]  Hehu Xie,et al.  A full multigrid method for nonlinear eigenvalue problems , 2015, 1502.04657.

[3]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[4]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[5]  Weizhu Bao,et al.  A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates , 2015, Journal of Scientific Computing.

[6]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[7]  Yvon Maday,et al.  Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Hehu Xie,et al.  Computable Error Estimates for a Nonsymmetric Eigenvalue Problem , 2017 .

[10]  Hehu Xie,et al.  Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements , 2018 .

[11]  Tomás Vejchodský,et al.  Complementarity based a posteriori error estimates and their properties , 2012, Math. Comput. Simul..

[12]  Tomaÿs Vejchodsky,et al.  COMPUTING UPPER BOUNDS ON FRIEDRICHS' CONSTANT , 2012 .

[13]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[14]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[15]  M. Ainsworth,et al.  Robust error bounds for finite element approximation of reaction–diffusion problems with non-constant reaction coefficient in arbitrary space dimension , 2014, 1401.2394.

[16]  Hehu Xie,et al.  Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.

[17]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[18]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[19]  Ivan Hlaváček,et al.  Convergence of a finite element method based on the dual variational formulation , 1976 .

[20]  Hehu Xie,et al.  Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods , 2013 .

[21]  Hehu Xie,et al.  A multigrid method for the ground state solution of Bose–Einstein condensates based on Newton iteration , 2014, BIT Numerical Mathematics.

[22]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[23]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..

[24]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[25]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[26]  Xuefeng Liu,et al.  Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..

[27]  Hehu Xie,et al.  Computable Error Estimates for Ground State Solution of Bose-Einstein Condensates , 2016 .

[28]  Elliott H. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.

[29]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[30]  Wolfgang Ketterle,et al.  Bose–Einstein condensation of atomic gases , 2002, Nature.

[31]  Eric Cornell,et al.  Very Cold Indeed: The Nanokelvin Physics of Bose-Einstein Condensation , 1996, Journal of research of the National Institute of Standards and Technology.

[32]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[33]  Tomás Vejchodský,et al.  Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..

[34]  Xuefeng Liu A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..

[35]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[36]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[37]  Martin Vohralík,et al.  A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrodinger equations , 2014 .

[38]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .