Activity Analysis Using Spatio-Temporal Trajectory Volumes in Surveillance Applications

In this paper, we present a system to analyze activities and detect anomalies in a surveillance application, which exploits the intuition and experience of security and surveillance experts through an easy- to-use visual feedback loop. The multi-scale and location specific nature of behavior patterns in space and time is captured using a wavelet-based feature descriptor. The system learns the fundamental descriptions of the behavior patterns in a semi-supervised fashion by the higher order singular value decomposition of the space described by the training data. This training process is guided and refined by the users in an intuitive fashion. Anomalies are detected by projecting the test data into this multi-linear space and are visualized by the system to direct the attention of the user to potential problem spots. We tested our system on real-world surveillance data, and it satisfied the security concerns of the environment.

[1]  Tim J. Ellis,et al.  Automatic learning of an activity-based semantic scene model , 2003, Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 2003..

[2]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[3]  Ramakant Nevatia,et al.  Representation and optimal recognition of human activities , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  Alex Pentland,et al.  Statistical Modeling of Human Interactions , 1998, CVPR 1998.

[5]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Hans-Hellmut Nagel,et al.  From image sequences towards conceptual descriptions , 1988, Image Vis. Comput..

[7]  Richard G. Baraniuk,et al.  Optimal tree approximation with wavelets , 1999, Optics & Photonics.

[8]  Tim J. Ellis,et al.  Spatial and Probabilistic Modelling of Pedestrian Behaviour , 2002, BMVC.

[9]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[10]  Ramakant Nevatia,et al.  Bayesian framework for video surveillance application , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[11]  James W. Davis,et al.  An adaptive focus-of-attention model for video surveillance and monitoring , 2007, Machine Vision and Applications.

[12]  Matthew Brand,et al.  Discovery and Segmentation of Activities in Video , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  François Brémond,et al.  Group behavior recognition with multiple cameras , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[15]  Amitabha Mukerjee,et al.  Conceptualizing Images , 2000, Image Vis. Comput..

[16]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[17]  Alex Pentland,et al.  Towards perceptual intelligence: statistical modeling of human individual and interactive behaviors , 2000 .

[18]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[19]  H. Buxton,et al.  Advanced visual surveillance using Bayesian networks , 1997 .

[20]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  Wei Niu,et al.  Human activity detection and recognition for video surveillance , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[22]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[23]  Monique Thonnat,et al.  Tracking Groups of People for Video Surveillance , 2002 .

[24]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[25]  Min Chen,et al.  Visual Signatures in Video Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[26]  Jake K. Aggarwal,et al.  Human Motion Analysis: A Review , 1999, Comput. Vis. Image Underst..

[27]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[28]  Aaron F. Bobick,et al.  Computers Seeing Action , 1996, BMVC.

[29]  G. Medioni,et al.  Scenario Recognition in Airborne Video Imagery , 2003 .