A dynamic zone defines interneuron remodeling in the adult neocortex

The contribution of structural remodeling to long-term adult brain plasticity is unclear. Here, we investigate features of GABAergic interneuron dendrite dynamics and extract clues regarding its potential role in cortical function and circuit plasticity. We show that remodeling interneurons are contained within a “dynamic zone” corresponding to a superficial strip of layers 2/3, and remodeling dendrites respect the lower border of this zone. Remodeling occurs primarily at the periphery of dendritic fields with addition and retraction of new branch tips. We further show that dendrite remodeling is not intrinsic to a specific interneuron class. These data suggest that interneuron remodeling is not a feature predetermined by genetic lineage, but rather, it is imposed by cortical laminar circuitry. Our findings are consistent with dynamic GABAergic modulation of feedforward and recurrent connections in response to top-down feedback and suggest a structural component to functional plasticity of supragranular neocortical laminae.

[1]  W. Gan,et al.  Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex , 2007, Nature Neuroscience.

[2]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[3]  C. Gilbert,et al.  Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex , 2006, Neuron.

[4]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[5]  Y. Imai,et al.  A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. , 1996, Biochemical and biophysical research communications.

[6]  Y. Kawaguchi,et al.  Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex , 2002, Journal of neurocytology.

[7]  A. Burkhalter,et al.  Intrinsic connections of rat primary visual cortex: Laminar organization of axonal projections , 1989, The Journal of comparative neurology.

[8]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[9]  Rafael Yuste,et al.  Quantitative morphologic classification of layer 5 neurons from mouse primary visual cortex , 2003, The Journal of comparative neurology.

[10]  J. Donoghue,et al.  Strengthening of horizontal cortical connections following skill learning , 1998, Nature Neuroscience.

[11]  B. Connors,et al.  The Spatial Dimensions of Electrically Coupled Networks of Interneurons in the Neocortex , 2002, The Journal of Neuroscience.

[12]  Bartlett W. Mel,et al.  Cortical rewiring and information storage , 2004, Nature.

[13]  J. R. Newton,et al.  Remodeling of Synaptic Structure in Sensory Cortical Areas In Vivo , 2006, The Journal of Neuroscience.

[14]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[15]  G. Feng,et al.  Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5′ and 3′ end formation , 2006, Nucleic Acids Research.

[16]  E. Callaway,et al.  Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin , 2006, The Journal of comparative neurology.

[17]  L. Cauller,et al.  The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation , 2004, Experimental Brain Research.

[18]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[19]  R. Yuste,et al.  Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. , 2007, Cerebral cortex.

[20]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[22]  C. Gilbert,et al.  Axonal sprouting accompanies functional reorganization in adult cat striate cortex , 1994, Nature.

[23]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[24]  Z. J. Huang,et al.  Development of GABA innervation in the cerebral and cerebellar cortices , 2007, Nature Reviews Neuroscience.

[25]  Robert G. Turcott,et al.  Temporal correlation in cat striate-cortex neural spike trains , 1996 .

[26]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[27]  W. Gan,et al.  Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex , 2005, Neuron.

[28]  L. Cauller Layer I of primary sensory neocortex: where top-down converges upon bottom-up , 1995, Behavioural Brain Research.

[29]  K. Weber,et al.  Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. , 1984, Differentiation; research in biological diversity.

[30]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[31]  KM Jacobs,et al.  Reshaping the cortical motor map by unmasking latent intracortical connections , 1991, Science.

[32]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[33]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[34]  J. Rossier,et al.  Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex , 1998, The European journal of neuroscience.

[35]  G. Feng,et al.  Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual Cortex , 2005, PLoS biology.

[36]  K. Svoboda,et al.  Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex , 2006, Neuron.

[37]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[38]  V. Ramachandran,et al.  Perceptual correlates of massive cortical reorganization. , 1992, Science.

[39]  Yongmin Kim,et al.  Applying multimedia to medical imaging , 1996 .

[40]  D. Buonomano,et al.  Cortical plasticity: from synapses to maps. , 1998, Annual review of neuroscience.

[41]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[42]  M. Herkenham Laminar organization of thalamic projections to the rat neocortex. , 1980, Science.

[43]  G. Shepherd,et al.  Transient and Persistent Dendritic Spines in the Neocortex In Vivo , 2005, Neuron.

[44]  C. Gilbert,et al.  Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex , 1995, Nature.

[45]  F. Ebner,et al.  Laminar comparison of somatosensory cortical plasticity. , 1994, Science.

[46]  Yasuo Kawaguchi,et al.  Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. , 2006, Cerebral cortex.

[47]  J. Kaas,et al.  Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. , 1998, Science.

[48]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[49]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  Lawrence C Katz,et al.  Dendritic stability in the adult olfactory bulb , 2003, Nature Neuroscience.

[51]  Michael P. Stryker,et al.  Anatomical Correlates of Functional Plasticity in Mouse Visual Cortex , 1999, The Journal of Neuroscience.

[52]  Hollis T. Cline,et al.  Multiphoton Imaging of Neurons in Living Tissue: Acquisition and Analysis of Time-Lapse Morphological Data , 2002, Real Time Imaging.