Molecular pore-network model for nanoporous materials. I: Application to adsorption in silicon-carbide membranes

We develop a new model for nanoporous materials and inorganic membranes, the pore space of which consists of interconnected pores of irregular shapes and sizes. The model is based on the Voronoi tessellation of the atomistic structure of the crystalline or amorphous materials, of which the membrane is made. It generates three-dimensional molecular pore networks with pore size distributions (PSDs) that resemble those of real inorganic nanoporous materials. In addition to being interconnected and having irregular shapes and distributed sizes, the pores also have rough internal surface, which is what one may expect to exist in most real nanoporous materials. To test the validity of the model, we utilize it to compute the adsorption isotherms of nitrogen in three distinct silicon-carbide (SiC) membranes at 77 K, using equilibrium molecular dynamics simulations. Using at most one adjustable parameter, the simulated isotherms and the experimental data are found to be in very good agreement.

[1]  S. Kenawy,et al.  Microstructural evaluation of thermally fatigued SiC-reinforced Al2O3/ZrO2 matrix composites , 2005 .

[2]  K. Maeda,et al.  Effects of Elemental Additives on Electrical Resistivity of Silicon Carbide Ceramics , 1987 .

[3]  M. Sahimi,et al.  Statistical Mechanics and Molecular Simulation of Adsorption in Microporous Materials: Pillared Clays and Carbon Molecular Sieve Membranes† , 2000 .

[4]  S. Nash,et al.  Numerical methods and software , 1990 .

[5]  M. Sahimi,et al.  Preparation and reactive applications of nanoporous silicon carbide membranes , 2004 .

[6]  F. Keil,et al.  Simulation and experiment of multicomponent diffusion and reaction in three-dimensional networks , 1999 .

[7]  M. Sahimi,et al.  Structural characterization of polyetherimide-based carbon molecular sieve membranes , 2000 .

[8]  F. Keil,et al.  Multicomponent Diffusion and Reaction in Three-Dimensional Networks: General Kinetics† , 1997 .

[9]  M. Sahimi,et al.  Silicon carbide membranes for gas separation applications , 2007 .

[10]  M. Sahimi,et al.  A novel sacrificial interlayer-based method for the preparation of silicon carbide membranes , 2008 .

[11]  J. Ghassemzadeh,et al.  Molecular modelling of adsorption of gas mixtures in montmorillonites intercalated with Al13-complex pillars , 2004 .

[12]  M. Sahimi,et al.  Pore network model of transport and separation of binary gas mixtures in nanoporous membranes , 2008 .

[13]  M. Sahimi,et al.  Experiments and Simulation of Transport and Separation of Gas Mixtures in Carbon Molecular Sieve Membranes , 1998 .

[14]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[15]  Sahimi,et al.  Nonequilibrium molecular dynamics simulations of transport and separation of gas mixtures in nanoporous materials , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  K. Schulz,et al.  Advantages of an integrated system for hot gas filtration using rigid ceramic elements , 1994 .

[17]  M. Sahimi,et al.  Molecular dynamics simulation of gas mixtures in porous media. I. Adsorption , 1998 .

[18]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[19]  P. Smith,et al.  Improved empirical interatomic potential for C—Si—H systems , 1999 .

[20]  M. Sahimi,et al.  Porous Silicon Carbide Sintered Substrates for High-Temperature Membranes , 2000 .

[21]  B. Widom,et al.  Potential-distribution theory and the statistical mechanics of fluids , 1982 .

[22]  I. Bae,et al.  Radial distribution functions of amorphous silicon carbide , 2002 .

[23]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[24]  M. Sahimi,et al.  Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes , 1999 .

[25]  T. Çagin,et al.  Generalized extended empirical bond-order dependent force fields including nonbond interactions , 1999 .

[26]  M. Sahimi,et al.  Atomistic simulation of nanoporous layered double hydroxide materials and their properties. II. Adsorption and diffusion. , 2007, The Journal of chemical physics.

[27]  M. Sahini,et al.  Applications of Percolation Theory , 2023, Applied Mathematical Sciences.

[28]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[29]  Rajiv K. Kalia,et al.  Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide , 2007 .

[30]  M. Sahimi,et al.  Statistical mechanics and molecular simulation of adsorption of ternary gas mixtures in nanoporous materials , 2001 .

[31]  H. Domínguez,et al.  Studies of porosity and diffusion coefficient in porous matrices by computer simulations , 2002 .

[32]  M. Sahimi Flow phenomena in rocks : from continuum models to fractals, percolation, cellular automata, and simulated annealing , 1993 .

[33]  Douglas M. Smith,et al.  Characterization of Porous Solids , 1994 .

[34]  H. Suda,et al.  Structural evolution during conversion of polycarbosilane precursor into silicon carbide-based microporous membranes , 2006 .

[35]  Joan E. Shields,et al.  Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density , 2006 .

[36]  Muhammad Sahimi,et al.  Statistical and continuum models of fluid-solid reactions in porous media , 1990 .

[37]  A. Fleischman,et al.  Epitaxial growth of 3C–SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition , 1995 .

[38]  M. Sahimi,et al.  Molecular pore network models of nanoporous materials , 2003 .

[39]  W. J. Choyke,et al.  Nanoporous SiC: A Candidate Semi-Permeable Material for Biomedical Applications , 2004, Biomedical microdevices.

[40]  M. Sahimi,et al.  Atomistic simulation of nanoporous layered double hydroxide materials and their properties. I. Structural modeling. , 2005, The Journal of chemical physics.

[41]  M. Sahimi,et al.  Experimental studies and computer simulation of the preparation of nanoporous silicon-carbide membranes by chemical-vapor infiltration/chemical-vapor deposition techniques , 2008 .

[42]  Michael Thorpe,et al.  Access in nanoporous materials , 2002 .

[43]  H. Domínguez,et al.  Pore matrices prepared at supercritical temperature by computer simulations: matrix characterization and studies of diffusion coefficients of adsorbed fluids , 2003 .

[44]  P. Harris,et al.  Hyper-parallel tempering Monte Carlo simulations of Ar adsorption in new models of microporous non-graphitizing activated carbon: effect of microporosity , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  K. Gubbins,et al.  Phase separation in confined systems , 1999 .

[46]  F. Keil Diffusion and reaction in porous networks , 1999 .

[47]  L. Scriven,et al.  Efficient molecular simulation of chemical potentials , 1989 .

[48]  K. Gubbins,et al.  Structure of saccharose-based carbon and transport of confined fluids: hybrid reverse Monte Carlo reconstruction and simulation studies , 2006 .

[49]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[50]  K. Shing,et al.  Free energy and vapour-liquid equilibria for a quadrupolar Lennard-Jones fluid , 1982 .