Development and application of TaSNAM 2.0 for advanced pressurized water reactor

[1]  G. Su,et al.  Thermal Hydraulic and Neutronics Coupling Analysis for Plate Type Fuel in Nuclear Reactor Core , 2020 .

[2]  A. Cammi,et al.  Erratum to: A Serpent/OpenFOAM coupling for 3D burnup analysis , 2020, The European Physical Journal Plus.

[3]  S. Qiu,et al.  Numerical simulation of temperature heterogeneity inside the AP1000 upper plenum and hot leg , 2020 .

[4]  J. R. Maiorino,et al.  Detailed neutronic calculations of the AP1000 reactor core with the Serpent code , 2019, Progress in Nuclear Energy.

[5]  Roger P. Pawlowski,et al.  The Virtual Environment for Reactor Applications (VERA): Design and architecture☆ , 2016, J. Comput. Phys..

[6]  Mohamed A. Elsawi,et al.  Benchmarking of the WIMS9/PARCS/TRACE code system for neutronic calculations of the Westinghouse AP1000™ reactor , 2015 .

[7]  Dalin Zhang,et al.  Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code , 2015 .

[8]  P. Savva,et al.  Multi-physics and multi-scale methods used in nuclear reactor analysis , 2014 .

[9]  Gumersindo Verdú,et al.  Resolution of the Generalized Eigenvalue Problem in the Neutron Diffusion Equation Discretized by the Finite Volume Method , 2014 .

[10]  Benoit Forget,et al.  The OpenMC Monte Carlo particle transport code , 2012 .

[11]  Guanghui Su,et al.  Development of a steady state analysis code for a molten salt reactor , 2009 .

[12]  Guanghui Su,et al.  Analysis on the neutron kinetics for a molten salt reactor , 2009 .

[13]  T. L. Schulz,et al.  Westinghouse AP1000 advanced passive plant , 2006 .

[14]  Yingjie Wang,et al.  Recent progress of CFD applications in PWR thermal hydraulics study and future directions , 2021 .

[15]  C. Fiorina GEN-FOAM: An OpenFOAM®-Based Multi-physics Solver for Nuclear Reactor Analysis , 2019, OpenFOAM®.

[16]  Alain Hébert,et al.  DRAGON5 and DONJON5, the contribution of École Polytechnique de Montréal to the SALOME platform , 2016 .