On the logarithmic Schrodinger equation
暂无分享,去创建一个
Eugenio Montefusco | Marco Squassina | Pietro d'Avenia | M. Squassina | P. d’Avenia | Eugenio Montefusco
[1] A. Haraux,et al. Équations d'évolution avec non linéarité logarithmique , 1980 .
[2] Marco Degiovanni,et al. Euler equations involving nonlinearities without growth conditions , 1996 .
[3] T. Cazenave. Stable solutions of the logarithmic Schrödinger equation , 1983 .
[4] Marion Kee,et al. Analysis , 2004, Machine Translation.
[5] P. Lions,et al. Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .
[6] W. Rother,et al. Nonlinear scalar field equations , 1992, Differential and Integral Equations.
[7] J. Nieto,et al. Global H1 solvability of the 3D logarithmic Schrödinger equation , 2010 .
[8] Jaeyoung Byeon,et al. Symmetry and monotonicity of least energy solutions , 2008, 0806.0299.
[9] I. Bialynicki-Birula,et al. Nonlinear Wave Mechanics , 1976 .
[10] Pierre-Louis Lions,et al. Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .
[11] Juan Luis Vázquez,et al. A Strong Maximum Principle for some quasilinear elliptic equations , 1984 .
[12] Shu-Ming Chang,et al. Spectra of Linearized Operators for NLS Solitary Waves , 2006, SIAM J. Math. Anal..
[13] I. Bialynicki-Birula,et al. Gaussons: Solitons of the Logarithmic Schrödinger Equation , 1979 .
[14] Marco Degiovanni,et al. Deformation properties for continuous functionals and critical point theory , 1993 .
[15] L. Jeanjean,et al. A remark on least energy solutions in RN , 2002 .
[16] Antonio Ambrosetti,et al. Perturbation Methods and Semilinear Elliptic Problems on R^n , 2005 .
[17] J. Serrin,et al. UNIQUENESS OF GROUND STATES FOR QUASILINEAR ELLIPTIC EQUATIONS IN THE EXPONENTIAL CASE , 1998 .
[18] Marco Degiovanni,et al. A critical point theory for nonsmooth functional , 1994 .
[19] Marco Degiovanni,et al. Multiple solutions of semilinear elliptic equations with one-sided growth conditions , 2000 .
[20] Pierre-Louis Lions,et al. Nonlinear scalar field equations, I existence of a ground state , 1983 .
[21] Konstantin G. Zloshchastiev,et al. Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences , 2009, 0906.4282.
[22] Manuel del Pino,et al. The optimal Euclidean Lp-Sobolev logarithmic inequality , 2003 .
[23] B. Gidas,et al. Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .
[24] Jared C. Bronski,et al. Soliton dynamics in a potential , 2000 .
[25] M. Squassina. RADIAL SYMMETRY OF MINIMAX CRITICAL POINTS FOR NONSMOOTH FUNCTIONALS , 2009, 0911.1333.
[26] E. Lieb,et al. Analysis, Second edition , 2001 .
[27] M. Shubin,et al. The Schrödinger Equation , 1991 .
[28] Marco Degiovanni,et al. Subdifferential Calculus and Nonsmooth Critical Point Theory , 2000, SIAM J. Optim..
[29] Michael Struwe,et al. Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .