Enhancing waste management through automatic control

Meeting environmental requirements is recognised as one of the six 21 century business drivers for automatic control. The proportional integral (PI) and proportional integral derivative (PID) controllers are the most dominant form of automatic controllers in industrial use today. With these techniques, it is necessary to adjust the controller parameters according to the nature of the process. Thus, for effective control of a heating, cooling and air-conditioning (HVAC) application, for example, specific values need to be chosen for the P, I and D parameters, which will be different for the values required to control, for example, a distillation column. This tailoring of controller to process is known as controller tuning . Controller tuning is easily and effectively performed using tuning rules (i.e. formulae for controller tuning, based on process information). Such tuning rules allow the easy set up of controllers to achieve optimum performance at commissioning. Importantly, they allow ease of re-commissioning if the characteristics of the process change. The paper outlines the results of recent work in the collation of industry-relevant PI and PID controller tuning rules, which may be applied to a variety of applications with the aim of improving waste management.

[1]  Robert N. Bateson Introduction to control system technology , 1973 .

[2]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[3]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[4]  B. Bequette,et al.  Process Control: Modeling, Design and Simulation , 2003 .

[5]  Tore Hägglund,et al.  Advances in Pid Control , 1999 .

[6]  Cheng-Ching Yu Autotuning of PID Controllers , 1999 .

[7]  A. J. Young,et al.  An introduction to process control system design , 1955 .

[9]  Pll Siinksen,et al.  Control , 1999, Diabetic medicine : a journal of the British Diabetic Association.

[10]  Louette R. Johnson Lutjens Research , 2006 .

[11]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[12]  Daniel Schmoldt,et al.  Computers and Electronics in Agriculture , 2017 .

[13]  F. H. Garner,et al.  Chemical Engineering , 1955, Nature.

[14]  David M. Auslander,et al.  The Next Generation of Single Loop Controllers: Hardware and Algorithms for the Discrete/Decimal Process Controller , 1975 .

[15]  William L. Luyben,et al.  Essentials of Process Control , 1996 .

[16]  Naim A. Kheir,et al.  Control system design , 2001, Autom..

[17]  M. J. Wheeler Heat and Mass Transfer , 1968, Nature.

[18]  F. G. Shinskey,et al.  Feedback controllers for the process industries , 1994 .

[19]  Pao C. Chau,et al.  Process Control: A First Course with MATLAB , 2002 .

[20]  Hilary Calow Practice case study , 1990, J. Softw. Maintenance Res. Pract..

[21]  Thomas E Marlin,et al.  Process Control , 1995 .

[22]  Magyar Tudományos Akadémia Acta Technica : Academiae Scientiarum Hungaricae , 1961 .

[23]  Ken Dutton,et al.  The art of control engineering , 1988 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[26]  H. D. McGeorge Control and instrumentation , 1999 .

[27]  William S. Levine,et al.  The Control Handbook , 2005 .

[28]  R. Toepfer,et al.  Techniques of process control , 1966 .

[29]  Bohn Stafleu van Loghum,et al.  Online … , 2002, LOG IN.

[30]  C. J. Chesmond Control System Technology , 1982 .