Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions
暂无分享,去创建一个
[1] S. Dragomir,et al. Hermite–Hadamard type inequalities for conformable fractional integrals , 2017, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[2] Mujahid Abbas,et al. Simpson's and Newton's type quantum integral inequalities for preinvex functions , 2021 .
[3] Thabet Abdeljawad,et al. Modification of certain fractional integral inequalities for convex functions , 2020 .
[4] Gerhard Schmeisser,et al. Sharp Error Estimates for Interpolatory Approximation on Convex Polytopes , 2005, SIAM J. Numer. Anal..
[5] Dumitru Baleanu,et al. On the Generalized Hermite-Hadamard Inequalities via the Tempered Fractional Integrals , 2020, Symmetry.
[6] Pshtiwan Othman Mohammed,et al. A New Version of the Hermite-Hadamard Inequality for Riemann-Liouville Fractional Integrals , 2020, Symmetry.
[7] Mehmet Zeki Sarikaya,et al. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals , 2017 .
[8] A. M. Fink,et al. Jensen inequalities for functions with higher monotonicities , 1990 .
[9] Pshtiwan Othman Mohammed,et al. Hermite‐Hadamard inequalities for Riemann‐Liouville fractional integrals of a convex function with respect to a monotone function , 2019, Mathematical Methods in the Applied Sciences.
[10] Y. Chu,et al. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables , 2021 .
[11] Charles E. M. Pearce,et al. Selected Topics on Hermite-Hadamard Inequalities and Applications , 2003 .
[12] Inequalities of trapezoidal type involving generalized fractional integrals , 2020 .
[13] M. Sarikaya,et al. SOME NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS , 2015 .
[14] Ugur S. Kirmaci,et al. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula , 2004, Appl. Math. Comput..
[15] Thabet Abdeljawad,et al. On conformable fractional calculus , 2015, J. Comput. Appl. Math..
[16] J. Pečarić,et al. A variant of Jensen’s inequality of Mercer’s type for operators with applications , 2006 .
[17] M. Abbas,et al. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second q b $q^{b}$ -derivatives , 2021 .
[18] Mehmet Zeki Sarikaya,et al. Hermite–Hadamard type inequalities for F-convex function involving fractional integrals , 2018, Journal of inequalities and applications.
[19] A. Guessab. DIRECT AND CONVERSE RESULTS FOR GENERALIZED MULTIVARIATE JENSEN-TYPE INEQUALITIES , 2013 .
[20] Gerhard Schmeisser,et al. Sharp Integral Inequalities of the Hermite-Hadamard Type , 2002, J. Approx. Theory.
[21] Hatice Öğulmüş,et al. Hermite-Hadamard-Mercer type inequalities for fractional integrals , 2021, Filomat.
[22] M. Ali,et al. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals , 2020, Mathematical Methods in the Applied Sciences.
[23] Ghulam Farid,et al. ON HADAMARD INEQUALITIES FOR k-FRACTIONAL INTEGRALS , 2016 .
[24] M. Abbas,et al. Simpson's and Newton's type Quantum integral inequalities for preinvex functions , 2020 .
[25] A. Karaca,et al. On the k-Riemann-Liouville fractional integral and applications , 2014 .
[26] J. Hadamard,et al. Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann , 1893 .
[27] Gerhard Schmeisser,et al. Convexity results and sharp error estimates in approximate multivariate integration , 2003, Math. Comput..
[28] Zhiyue Zhang,et al. Some new Simpson's type inequalities for coordinated convex functions in quantum calculus , 2020, Mathematical Methods in the Applied Sciences.
[29] Hüseyin Budak,et al. Some New Quantum Hermite–Hadamard-Like Inequalities for Coordinated Convex Functions , 2020, Journal of Optimization Theory and Applications.
[30] M. Emin Özdemir,et al. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula , 2004, Appl. Math. Comput..
[31] Pshtiwan Othman Mohammed,et al. On generalized fractional integral inequalities for twice differentiable convex functions , 2020, J. Comput. Appl. Math..
[32] P. Mohammed,et al. Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates , 2017 .
[33] M. Abbas,et al. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions , 2021 .
[34] Jen-Chih Yao,et al. Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{do , 2019, Journal of Inequalities and Applications.
[35] Zhiyue Zhang,et al. On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions , 2021 .
[36] Mehmet Zeki Sarikaya,et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities , 2013, Math. Comput. Model..
[37] Thabet Abdeljawad,et al. Fractional operators with exponential kernels and a Lyapunov type inequality , 2017, Advances in Difference Equations.
[38] Zhiyue Zhang,et al. Some new Simpson's type inequalities for coordinated convex functions in quantum calculus , 2020, Mathematical Methods in the Applied Sciences.
[39] Ravi P. Agarwal,et al. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula , 1998 .
[40] Jen-Chih Yao,et al. Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)${(\alpha,m)}$-convex functions , 2019, Journal of Inequalities and Applications.
[41] Yu‐ming Chu,et al. Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus , 2021, Open Mathematics.
[42] Fatma Ertuğral,et al. On the generalized Hermite-Hadamard inequalities , 2020 .
[43] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[44] Arran Fernandez,et al. Hermite‐Hadamard inequalities in fractional calculus defined using Mittag‐Leffler kernels , 2020, Mathematical Methods in the Applied Sciences.
[45] Ahmed Alsaedi,et al. Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals , 2016, J. Comput. Appl. Math..
[46] F. Mainardi. Fractional Calculus , 2018, Fractional Calculus.
[47] M. Moslehian,et al. Refinements of the operator Jensen-Mercer inequality , 2013 .