High refractive index TiO2-PHEMA hydrogel for ophthalmological applications

[1]  H. Ihara,et al.  The simplest method for fabrication of high refractive index polymer-metal oxide hybrids based on a soap-free process. , 2014, Chemical communications.

[2]  M. El-sadek,et al.  Characterization and Photocatalytic Efficiency of Palladium Doped-TiO 2 Nanoparticles , 2013 .

[3]  Toshinobu Yogo,et al.  In situ synthesis of transparent TiO2 nanoparticle/polymer hybrid , 2013, Journal of Materials Science.

[4]  A-Young Sung,et al.  Ophthalmic application of poly(HEMA)s containing nanoparticles and dimethylacrylamide. , 2012, Journal of nanoscience and nanotechnology.

[5]  Mary B. Chan-Park,et al.  High Refractive Index Inorganic-Organic Interpenetrating Polymer Network (IPN) Hydrogel Nanocomposite toward Artificial Cornea Implants. , 2012, ACS macro letters.

[6]  M. Goldacre,et al.  Risk of selected eye diseases in people admitted to hospital for hypertension or diabetes mellitus: record linkage studies , 2012, British Journal of Ophthalmology.

[7]  Tilman Grune,et al.  Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system. , 2011, Current pharmaceutical design.

[8]  Vijay Kumar Thakur,et al.  Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors , 2011 .

[9]  Shameema Sikder,et al.  Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision , 2011, Clinical ophthalmology.

[10]  Bai Yang,et al.  High refractive index organic–inorganic nanocomposites: design, synthesis and application , 2009 .

[11]  Takuya Tsuzuki,et al.  Abnormal Transmittance of Refractive-Index-Modified ZnO/Organic Hybrid Films , 2008 .

[12]  Bai Yang,et al.  Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites , 2006 .

[13]  Joong-Hee Lee,et al.  Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[14]  Walter Caseri,et al.  Nanocomposites of polymers and inorganic particles: preparation, structure and properties , 2006 .

[15]  R. D. K. Misra Polymer nanocomposites: microstructure control, properties and processing , 2006 .

[16]  F. Branda,et al.  Swelling properties and bioactivity of silica gel/pHEMA nanocomposites , 2006, Journal of materials science. Materials in medicine.

[17]  Elizabeth D. Wederell,et al.  Transforming Growth Factor-β-Induced Epithelial-Mesenchymal Transition in the Lens: A Model for Cataract Formation , 2005, Cells Tissues Organs.

[18]  J. J. Vos,et al.  Thermal cataract, from furnaces to lasers , 2004, Clinical & experimental optometry.

[19]  S. Resnikoff,et al.  Global data on visual impairment in the year 2002. , 2004, Bulletin of the World Health Organization.

[20]  David V Leaming,et al.  Practice styles and preferences of ASCRS members—2003 survey , 2004, Journal of cataract and refractive surgery.

[21]  A. Nečas,et al.  Corneal Inflammatory Diseases - Infectious Keratitis in Dogs , 2004 .

[22]  H. Kecova,et al.  Review Article Phacoemulsification and Intraocular Lens Implantation: Recent Trends in Cataract Surgery , 2004 .

[23]  Zhi Zheng,et al.  Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity , 2003 .

[24]  H B Dick,et al.  [Is a cataract avoidable? Current status with special emphasis on the pathophysiology of oxidative lens damage, nutritional factors, and the ARED study]. , 2003, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[25]  H. Dick,et al.  Ist die Katarakt vermeidbar? , 2003, Der Ophthalmologe.

[26]  A. Navrotsky,et al.  Energetics of nanocrystalline TiO2 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Clément Sanchez,et al.  Synthesis and Characterization of Mesostructured Titania-Based Materials through Evaporation-Induced Self-Assembly , 2002 .

[28]  K. Nakamae,et al.  Glistening formation in an AcrySof lens initiated by spinodal decompositionof the polymer network bytemperature change , 2001, Journal of cataract and refractive surgery.

[29]  H. Taylor,et al.  Cataract blindness--challenges for the 21st century. , 2001, Bulletin of the World Health Organization.

[30]  Seshu B. Desu,et al.  Brookite-rich titania films made by pulsed laser deposition , 2000 .

[31]  S. Barman,et al.  The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. , 1999, Ophthalmology.

[32]  A. Tarre,et al.  TiO2 thin films by atomic layer deposition : a case of uneven growth at low temperature , 1998 .

[33]  M. Kass,et al.  Comparative results of combined procedures for glaucoma and cataract: I. Extracapsular cataract extraction versus phacoemulsification and foldable versus rigid intraocular lenses. , 1997, Ophthalmic surgery and lasers.

[34]  H C SEWARD,et al.  Folding intraocular lenses: materials and methods , 1997, The British journal of ophthalmology.

[35]  Seward Hc Folding intraocular lenses: materials and methods , 1997 .

[36]  A D Négrel,et al.  Global data on blindness. , 1995, Bulletin of the World Health Organization.

[37]  H. Jj Post-translational modification of lens proteins in cataract. , 1991 .

[38]  J. Harding,et al.  Post-translational modification of lens proteins in cataract. , 1991, Lens and eye toxicity research.

[39]  B. D. Ratner,et al.  Relating the surface properties of intraocular lens materials to endothelial cell adhesion damage. , 1989, Investigative ophthalmology & visual science.