Maximum likelihood approaches for noncoherent communications with chaotic carriers

This paper deals with two problems. The first one is the noise decontamination of chaotic carriers using a maximum likelihood approach, the second is the design of communications schemes with chaotic carriers. After presenting improvements of the noise decontamination algorithms, we apply them in communication schemes. Experimental evidences show competitive capabilities of the proposed schemes with respect to the existing chaos-based modulation-demodulation techniques. In our approach we assume that the dynamics of the carriers are known in advance.

[1]  H. Abarbanel,et al.  Noise reduction in chaotic time series using scaled probabilistic methods , 1991 .

[2]  C. Myers,et al.  Signal separation for nonlinear dynamical systems , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[3]  Hao Bai-lin Elementary Symbolic Dynamics , 1988 .

[4]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[5]  G. Kolumban,et al.  Differential chaos shift keying : A robust coding for chaotic communication , 1996 .

[6]  Yorke,et al.  Noise reduction in dynamical systems. , 1988, Physical review. A, General physics.

[7]  J. Yorke,et al.  Coping with chaos. Analysis of chaotic data and the exploitation of chaotic systems , 1994 .

[8]  M. Gotz,et al.  Statistical analysis of chaotic communication schemes , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[9]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[10]  Neil Gershenfeld,et al.  An Experimentalist’s Introduction to the Observation of Dynamical Systems , 1988 .

[11]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[12]  Simon Haykin,et al.  Detection of signals in chaos , 1995, Proc. IEEE.

[13]  J. Schweizer The performance of chaos shift keying: synchronization versus symbolic backtracking , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[14]  Michael D. Richard,et al.  estimation and detection with chaotic systems , 1994 .

[15]  D. Broomhead,et al.  Signals in chaos: a method for the cancellation of deterministic noise from discrete signals , 1995 .

[16]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[17]  Clare D. McGillem,et al.  A chaotic direct-sequence spread-spectrum communication system , 1994, IEEE Trans. Commun..

[18]  Hervé Dedieu,et al.  Communications with chaotic time series: probabilistic methods for noise reduction , 1999 .

[19]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[20]  Simon Haykin,et al.  Communication Systems , 1978 .

[21]  Chaos shift keying in the presence of noise: a simple discrete time example , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[22]  H. Dedieu,et al.  Noise reduction in chaotic time series - an overview , 1998 .

[23]  J. D. Farmer,et al.  Optimal shadowing and noise reduction , 1991 .

[24]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[25]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  James A. Yorke,et al.  Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .