Solitons, τ-functions and hamiltonian reduction for non-Abelian conformal affine Toda theories

[1]  M. Grisaru,et al.  Toda soliton mass corrections and the particle-soliton duality conjecture , 1994, hep-th/9411176.

[2]  M. Freeman Conserved charged and soliton solutions in affine Toda theory , 1994, hep-th/9408092.

[3]  Q. Park,et al.  Massive integrable soliton theories , 1994, hep-th/9412062.

[4]  L. A. Ferreira,et al.  The Conserved Charges and Integrability of the Conformal Affine Toda Models , 1993, hep-th/9308086.

[5]  N. Turok,et al.  Solitons and the energy-momentum tensor for affine Toda theory , 1993 .

[6]  N. Turok,et al.  Affine Toda solitons and vertex operators , 1993, hep-th/9305160.

[7]  M. Kneipp,et al.  Crossing and antisolitons in affine Toda theories , 1993, hep-th/9305154.

[8]  J. Underwood Aspects of Non-Abelian Toda Theories , 1993, hep-th/9304156.

[9]  L. O'raifeartaigh,et al.  On the completeness of the set of classical W-algebras obtained from DS reductions , 1993, hep-th/9304125.

[10]  M. Saveliev,et al.  On a solitonic specialisation for the general solutions of some two-dimensional completely integrable systems , 1992, hep-th/9212123.

[11]  L. A. Ferreira,et al.  Hirota's solitons in the affine and the conformal affine Toda models , 1992, hep-th/9212086.

[12]  T. Hollowood,et al.  Tau-functions and generalized intergrable hierarchies , 1992, hep-th/9208058.

[13]  L. A. Ferreira,et al.  Connection between the affine and conformal affine Toda models and their Hirota solution , 1992, hep-th/9207061.

[14]  D. Bernard,et al.  AFFINE SOLITONS: A RELATION BETWEEN TAU FUNCTIONS, DRESSING AND BÄCKLUND TRANSFORMATIONS , 1992, hep-th/9206002.

[15]  L. A. Ferreira,et al.  On two-current realization of KP hierarchy , 1992, hep-th/9206096.

[16]  L. A. Ferreira,et al.  Higher spin symmetries and w∞ algebra in the conformal affine Toda model , 1992 .

[17]  A. Leznov,et al.  Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems , 1992 .

[18]  J. Gervais,et al.  Black holes from non-abelian Toda theories , 1992, hep-th/9203039.

[19]  G. Watts,et al.  Duality in quantum Toda theory and W-algebras , 1992, hep-th/9202070.

[20]  L. A. Ferreira,et al.  Comments on two-loop Kac-Moody algebras , 1992 .

[21]  D. Bernard,et al.  Dressing symmetries , 1991, hep-th/9111036.

[22]  T. Hollowood Solitons in affine Toda field theories , 1991, hep-th/9110010.

[23]  A. Wipf,et al.  Generalized Toda theories and W-algebras associated with integral gradings , 1992 .

[24]  L. Bonora,et al.  Sinh-Gordon model as a spontaneously broken conformal theory , 1991 .

[25]  A. Fring,et al.  The mass spectrum and coupling in affine Toda theories , 1991 .

[26]  M. Freeman On the mass spectrum of affine Toda field theory , 1991 .

[27]  D. Bernard,et al.  Dressing transformations and the origin of the quantum group symmetries , 1991 .

[28]  L. A. Ferreira,et al.  Kac-Moody construction of Toda type field theories , 1991 .

[29]  A. Wipf,et al.  Kac-Moody realization of W-algebras , 1990 .

[30]  L. Bonora,et al.  Conformal affine sl2 Toda field theory , 1990 .

[31]  R. Sasaki,et al.  AFFINE TODA FIELD-THEORY AND EXACT S-MATRICES , 1990 .

[32]  A. Wipf,et al.  Toda Theory and W-Algebra from a Gauged WZNW Point of View , 1990 .

[33]  R. Sasaki,et al.  Extended Toda field theory and exact S-matrices , 1989 .

[34]  A. Wipf,et al.  Liouville and Toda theories as conformally reduced WZNW theories , 1989 .

[35]  T. Hollowood,et al.  Rational conformal field theories at, and away from, criticality as Toda field theories , 1989 .

[36]  T. Eguchi,et al.  Deformations of conformal field theories and soliton equations , 1989 .

[37]  P. Goddard,et al.  Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .

[38]  V. Kac,et al.  112 CONSTRUCTIONS OF THE BASIC REPRESENTATION OF THE LOOP GROUP OF E(8) , 1986 .

[39]  M. Semenov-Tian-Shansky Dressing transformations and Poisson group actions , 1985 .

[40]  L. A. Ferreira,et al.  Non-compact symmetric spaces and the Toda molecule equations , 1985 .

[41]  G. Wilson Infinite-dimensional Lie groups and algebraic geometry in soliton theory , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[42]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[43]  A. Perelomov,et al.  Quantum Integrable Systems Related to Lie Algebras , 1983 .

[44]  A. Leznov,et al.  Two-dimensional exactly and completely integrable dynamical systems , 1983 .

[45]  A. Leznov,et al.  Two-dimensional nonlinear equations of string type and their complete integration , 1983 .

[46]  M. A. Semenov-Tyan-Shanskii What is a classical r-matrix? , 1983 .

[47]  Masaki Kashiwara,et al.  Transformation Groups for Soliton Equations —Euclidean Lie Algebras and Reduction of the KP Hierarchy— , 1982 .

[48]  Masaki Kashiwara,et al.  Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .

[49]  Masaki Kashiwara,et al.  Operator Approach to the Kadomtsev-Petviashvili Equation —Transformation Groups for Soliton Equations III— , 1981 .

[50]  A. Perelomov,et al.  Classical integrable finite-dimensional systems related to Lie algebras , 1981 .

[51]  D. Olive MAGNETIC MONOPOLES AND ELECTROMAGNETIC DUALITY CONJECTURES , 1981 .

[52]  A. Perelomov,et al.  The Toda chain as a reduced system , 1980 .

[53]  A. Leznov,et al.  Representation of zero curvature for the system of nonlinear partial differential equations $$x_{\alpha ,z\bar z} = \exp (kx)_\alpha $$ and its integrability , 1979 .

[54]  A. Perelomov,et al.  Explicit solutions of classical generalized toda models , 1979 .

[55]  V. Zakharov,et al.  Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II , 1979 .

[56]  D. Olive,et al.  Magnetic monopoles as gauge particles , 1977 .

[57]  J. Nuyts,et al.  Gauge theories and magnetic charge , 1977 .

[58]  R. Hirota Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .

[59]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[60]  W. Ledermann INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .

[61]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[62]  V. Kats,et al.  Automorphisms of finite order of semisimple Lie algebras , 1969 .