Global Optimisation of Chemical Process Flowsheets

Some chemical process design systems include a numerical optimisation capability and this is increasingly being demanded. The incorporation of interval based global optimisation in modular based systems which dominate the market is difficult because of the way modules are used as black boxes. In this paper a way of implementing global optimisation by recasting the models in a generic way is discussed. Two interval based algorithms are presented with results on two simple process optimisation problems giving an idea of the price that may need to be paid for the convenience of the modular systems. The two interval algorithms are based on reformulating the problem to be able to provide tighter estimates for the lower bounds on convex nonlinearities.

[1]  Constantinos C. Pantelides,et al.  Global Optimisation of General Process Models , 1996 .

[2]  Lorenz T. Biegler,et al.  Simultaneous modular simulation and optimization , 1983 .

[3]  Mahmoud M. El-Halwagi,et al.  Global Optimization of Nonconvex MINLP’s by Interval Analysis , 1996 .

[4]  I. Grossmann,et al.  Global optimization of bilinear process networks with multicomponent flows , 1995 .

[5]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[6]  Ignacio E. Grossmann,et al.  Global optimization algorithm for heat exchanger networks , 1993 .

[7]  Venkat Venkatasubramanian,et al.  A genetic algorithmic framework for process design and optimization , 1991 .

[8]  I. Grossmann Global Optimization in Engineering Design , 2010 .

[9]  Eric S. Fraga,et al.  Mass exchange network synthesis using genetic algorithms , 1998 .

[10]  Christodoulos A. Floudas,et al.  A global optimization method, αBB, for process design , 1996 .

[11]  Christodoulos A. Floudas,et al.  Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions , 1999 .

[12]  I. D. L. Bogle,et al.  Global optimisation of constrained non-convex programs using reformulation and interval analysis , 1999 .

[13]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[14]  Lorenz T. Biegler,et al.  Fourth International Conference on Foundations of Computer-Aided Process Design : proceedings of the Conference held at Snowmass, Colorado, July 10-14, 1994 , 1995 .

[15]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[16]  R. P. Byrne,et al.  Solving Nonconvex Process Optimisation Problems Using Interval Subdivision Algorithms , 1996 .

[17]  Pierre Hansen,et al.  An analytical approach to global optimization , 1991, Math. Program..

[18]  Mahmoud M. El-Halwagi,et al.  Global optimization of nonconvex nonlinear programs via interval analysis , 1994 .

[19]  I. D. L. Bogle,et al.  Global optimization of modular process flowsheets , 2000 .

[20]  Michael Narodoslawsky,et al.  The Sustainable Process Index a new dimension in ecological evaluation , 1996 .

[21]  Eric S. Fraga,et al.  Multicriteria process synthesis for generating sustainable and economic bioprocesses , 1999 .

[22]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[23]  I. Grossmann,et al.  Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis , 1988 .

[24]  Josef Kallrath,et al.  Mixed Integer Optimization in the Chemical Process Industry: Experience, Potential and Future Perspectives , 2000 .

[25]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[26]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[27]  J. Weiner,et al.  Fundamentals and applications , 2003 .