Constraint structure and BRST quantization of the spinning particle

The topological spinning particle is quantized using a generalized Lagrangian BRST formalism based on the analysis of the constraint structure of the classical gauge algebra.

[1]  V. Rivelles Topological spinning particles , 1992 .

[2]  Z. Antunović,et al.  Off-shell BRST quantization of the massive superparticle* , 1991 .

[3]  M. Henneaux Elimination of the auxiliary fields in the antifield formalism , 1990 .

[4]  Marc Henneaux,et al.  Gauge invariance and degree of freedom count , 1990 .

[5]  M. Blagojević,et al.  Off-shell BRST quantization of reducible gauge theories , 1989 .

[6]  P. Townsend Supersymmetric extended solitons , 1988 .

[7]  M. Henneaux Hamiltonian form of the path integral for theories with a gauge freedom , 1985 .

[8]  I. Batalin,et al.  Quantization of Gauge Theories with Linearly Dependent Generators , 1983 .

[9]  J. Lukierski,et al.  Supersymmetric Particles in $N=2$ Superspace: Phase Space Variables and Hamiltonian Dynamics , 1983 .

[10]  I. Batalin,et al.  Feynman rules for reducible gauge theories , 1983 .

[11]  L. Castellani Symmetries in constrained Hamiltonian systems , 1982 .

[12]  B. Baldin,et al.  Pair production of pions with symmetric momenta in the range 0.5⩽pT⩽2.0 GeV/c In 70 GeV p-p collisions , 1982 .

[13]  Michael B. Green,et al.  Point-like particles and off-shell supersymmetry algebras , 1981 .

[14]  C. Teitelboim Supergravity and Square Roots of Constraints , 1977 .

[15]  W. Kells,et al.  Ramsey resonance in high field; a novel method for the measurement of hyperfine Zeeman frequencies of muonium , 1976 .

[16]  N. Mukunda Generators of Symmetry Transformations for Constrained Hamiltonian Systems , 1980 .