LOCALIZING DIFFERENTIALLY EVOLVING COVARIANCE STRUCTURES VIA SCAN STATISTICS.
暂无分享,去创建一个
Sterling C. Johnson | Ronak R. Mehta | Vikas Singh | Shulei Wang | Hyunwoo J. Kim | Ming Yuan | S. Johnson
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] U. Grenander,et al. Statistical analysis of stationary time series , 1957 .
[3] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[4] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[5] George A. F. Seber,et al. Linear regression analysis , 1977 .
[6] C. Roehrig,et al. Conditions for Identification in Nonparametric and Parametic Models , 1988 .
[7] E. Mammen,et al. Comparing Nonparametric Versus Parametric Regression Fits , 1993 .
[8] U. Grenander,et al. Computational anatomy: an emerging discipline , 1998 .
[9] S. Geer. Applications of empirical process theory , 2000 .
[10] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[11] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[12] Alan J. Lee,et al. Linear Regression Analysis: Seber/Linear , 2003 .
[13] M. Talagrand. The Generic Chaining , 2005 .
[14] Larry A. Wasserman,et al. The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..
[15] Larry A. Wasserman,et al. Time varying undirected graphs , 2008, Machine Learning.
[16] Ming Yuan,et al. High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..
[17] Hongzhe Li,et al. Optimal Sparse Segment Identification With Application in Copy Number Variation Analysis , 2010, Journal of the American Statistical Association.
[18] G. Walther. Optimal and fast detection of spatial clusters with scan statistics , 2010, 1002.4770.
[19] Stefan Sperlich. Semiparametric and Nonparametric Econometrics , 2011 .
[20] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[21] E. Candès,et al. Detection of an anomalous cluster in a network , 2010, 1001.3209.
[22] P. Thomas Fletcher,et al. Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds , 2012, International Journal of Computer Vision.
[23] H. Zou,et al. Regularized rank-based estimation of high-dimensional nonparanormal graphical models , 2012, 1302.3082.
[24] Larry A. Wasserman,et al. High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.
[25] Stefan Sommer,et al. Optimization over geodesics for exact principal geodesic analysis , 2010, Advances in Computational Mathematics.
[26] Patrick Danaher,et al. The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[27] Anuj Srivastava,et al. Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance , 2014, 1405.0803.
[28] Peter Wonka,et al. Fused Multiple Graphical Lasso , 2012, SIAM J. Optim..
[29] Zhengwu Zhang,et al. Rate-Invariant Analysis of Covariance Trajectories , 2018, Journal of Mathematical Imaging and Vision.