Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability

[1]  Markus Antonietti,et al.  Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design , 2019, Sustainable Energy & Fuels.

[2]  M. Antonietti,et al.  Understanding the Charge Storage Mechanism to Achieve High Capacity and Fast Ion Storage in Sodium‐Ion Capacitor Anodes by Using Electrospun Nitrogen‐Doped Carbon Fibers , 2019, Advanced Functional Materials.

[3]  Dipan Kundu,et al.  Fast Na‐Ion Intercalation in Zinc Vanadate for High‐Performance Na‐Ion Hybrid Capacitor , 2018, Advanced Energy Materials.

[4]  M. Antonietti,et al.  Template- and Metal-Free Synthesis of Nitrogen-Rich Nanoporous "Noble" Carbon Materials by Direct Pyrolysis of a Preorganized Hexaazatriphenylene Precursor. , 2018, Angewandte Chemie.

[5]  Lauren E. Marbella,et al.  Niobium tungsten oxides for high-rate lithium-ion energy storage , 2018, Nature.

[6]  M. Antonietti,et al.  Toward the Experimental Understanding of the Energy Storage Mechanism and Ion Dynamics in Ionic Liquid Based Supercapacitors , 2018 .

[7]  Huang Zhang,et al.  Beyond Insertion for Na‐Ion Batteries: Nanostructured Alloying and Conversion Anode Materials , 2018 .

[8]  G. Ceder,et al.  Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials , 2018, Nature.

[9]  Jun Lu,et al.  Batteries and fuel cells for emerging electric vehicle markets , 2018 .

[10]  Kun Feng,et al.  Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. , 2018, Small.

[11]  Chia-Chin Chen,et al.  Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes , 2018 .

[12]  Jun Lu,et al.  Lithium-Sulfur Batteries for Commercial Applications , 2018 .

[13]  Dongliang Chao,et al.  Nonaqueous Hybrid Lithium‐Ion and Sodium‐Ion Capacitors , 2017, Advanced materials.

[14]  S. Dou,et al.  Next‐Generation Batteries , 2017, Advances in Materials.

[15]  Xiaobo Ji,et al.  Carbon Anode Materials for Advanced Sodium‐Ion Batteries , 2017 .

[16]  M. Antonietti,et al.  Hexaazatriphenylene doped carbon nitrides—Biomimetic photocatalyst with superior oxidation power , 2017 .

[17]  L. Dai,et al.  2D Frameworks of C2N and C3N as New Anode Materials for Lithium‐Ion Batteries , 2017, Advanced materials.

[18]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[19]  Stefan Kaskel,et al.  Nanostructure characterization of carbide-derived carbons by morphological analysis of transmission electron microscopy images combined with physisorption and Raman spectroscopy , 2016 .

[20]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[21]  Lei Zhang,et al.  Free‐Standing Nitrogen‐Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium‐Ion Batteries with Ultralong Cycle Life and Superior Rate Capability , 2016 .

[22]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[23]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[24]  Kai Cui,et al.  Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors , 2015 .

[25]  Dejun Li,et al.  Effect of nitrogen atomic percentage on N+-bombarded MWCNTs in cytocompatibility and hemocompatibility , 2014, Nanoscale Research Letters.

[26]  M. Oschatz,et al.  Tailoring porosity in carbon materials for supercapacitor applications , 2014 .

[27]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[28]  Y. Gogotsi,et al.  Structural evolution of carbide-derived carbons upon vacuum annealing , 2012 .

[29]  Shuhong Yu,et al.  Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. , 2012, ACS nano.

[30]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[31]  E. R. Fisher,et al.  Deposition of amorphous CN(x) materials in BrCN plasmas: exploring adhesion behavior as an indicator of film properties. , 2011, ACS applied materials & interfaces.

[32]  M. Thommes,et al.  Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons , 2009 .

[33]  Liang Xu,et al.  Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates , 2016 .

[34]  M. Oschatz,et al.  ZnO Hard Templating for Synthesis of Hierarchical Porous Carbons with Tailored Porosity and High Performance in Lithium‐Sulfur Battery , 2015 .

[35]  Sui‐Dong Wang,et al.  Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy , 2012 .