Expansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques

Chondrocytes are known to dedifferentiate when cultured in monolayer culture, which may compromise the efficacy of cartilage repair systems in which cells are expanded by repeat passage in monolayer prior to implantation. We tested the hypothesis that repeat passage in alginate beads can provide sufficient expansion of cells, while producing cells with enhanced chondrocytic phenotype. Bovine articular chondrocytes were seeded in 2% alginate beads or in monolayer. 4 passages at 7-day intervals were performed. Values of 9.1 days for monolayer expansion and 12.5 days for alginate expansion were estimated for a 10-fold increase in cell number. For assessment of chondrocytic and fibroblastic phenotype, expanded cells were seeded in alginate beads or on glass coverslips and cultured for 7 days. On subsequent seeding in alginate, cells which had previously been subcultured in alginate showed higher levels of both DNA and GAG synthesis than cells passaged in monolayer. Furthermore, the alginate-passaged cells retained a chondrocytic phenotype, indicated by synthesis of type II collagen and chondroitin-6-sulphate, while cells passaged in monolayer synthesised type I collagen, indicating a fibroblastic phenotype. In conclusion, expansion of cells for autologous cartilage repair systems, using subculture within alginate beads, provides a potentially attractive alternative to monolayer expansion.

[1]  S. Moskalewski,et al.  Rejection of cartilage formed by transplanted allogeneic chondrocytes: evaluation with monoclonal antibodies. , 1995, Transplant immunology.

[2]  D L Bader,et al.  Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. , 1996, Analytical biochemistry.

[3]  E. Thonar,et al.  Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. , 1994, Journal of cell science.

[4]  N. Forest,et al.  Cytochalasin D induces changes in cell shape and promotes in vitro chondrogenesis: A morphological study , 1995, Biology of the cell.

[5]  M. Takigawa,et al.  Cytoskeleton and differentiation: effects of cytochalasin B and colchicine on expression of the differentiated phenotype of rabbit costal chondrocytes in culture. , 1984, Cell differentiation.

[6]  P. Benya,et al.  Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape , 1988, The Journal of cell biology.

[7]  J. Vacanti,et al.  Synthetic Polymers Seeded with Chondrocytes Provide a Template for New Cartilage Formation , 1991, Plastic and reconstructive surgery.

[8]  P. Benya,et al.  Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression , 1988, The Journal of cell biology.

[9]  N. Steimberg,et al.  Dedifferentiated chondrocytes cultured in alginate beads: Restoration of the differentiated phenotype and of the metabolic responses to Interleukin‐1β , 1998 .

[10]  K. Fujikawa,et al.  Effects of high molecular weight hyaluronan on the distribution and movement of proteoglycan around chondrocytes cultured in alginate beads. , 2001, Osteoarthritis and cartilage.

[11]  P. Benya,et al.  Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels , 1982, Cell.

[12]  J. Verhaar,et al.  Optimization of chondrocyte expansion in culture. Effect of TGF beta-2, bFGF and L-ascorbic acid on bovine articular chondrocytes. , 1999, Acta orthopaedica Scandinavica.

[13]  C. Ohlsson,et al.  Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. , 1994, The New England journal of medicine.

[14]  E. Thonar,et al.  Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. , 1992, Matrix.

[15]  J. Bonaventure,et al.  Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. , 1994, Experimental cell research.

[16]  G. Bentley,et al.  The control of cell division in articular chondrocytes. , 1993, Osteoarthritis and cartilage.

[17]  P. Benya,et al.  Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture , 1978, Cell.

[18]  R. Bank,et al.  Synthesis of collagen by bovine chondrocytes cultured in alginate; posttranslational modifications and cell-matrix interaction. , 1997, Experimental cell research.

[19]  G. Bentley,et al.  Homotransplantation of Isolated Epiphyseal and Articular Cartilage Chondrocytes into Joint Surfaces of Rabbits , 1971, Nature.

[20]  G. Verbruggen,et al.  Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks , 2001, Annals of the rheumatic diseases.

[21]  D. Bader,et al.  Chapter 4 - Structure – Properties of Soft Tissues Articular Cartilage , 2000 .

[22]  R Tubo,et al.  Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[23]  R. Warnke,et al.  Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[24]  D K MacCallum,et al.  Culture and growth characteristics of chondrocytes encapsulated in alginate beads. , 1989, Connective tissue research.

[25]  E. J. Miller,et al.  Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Ochi,et al.  Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. , 1998, Acta orthopaedica Scandinavica.

[27]  F M Watt,et al.  Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes. , 1988, Experimental cell research.

[28]  W. Otto,et al.  Fluorimetric DNA assay for cell growth estimation. , 1992, Analytical biochemistry.

[29]  J. Vacanti,et al.  De Novo Cartilage Generation Using Calcium Alginate‐Chondrocyte Constructs , 1996, Plastic and reconstructive surgery.

[30]  J. McPherson,et al.  Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. , 1997, Experimental cell research.

[31]  L. Peterson,et al.  The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.