Quasi-contraction of Perov type

Abstract Perov (1964) [19] used the concept of vector valued metric space, and obtained a Banach type fixed point theorem on such a complete generalized metric space. In this article we study fixed point results for the new extensions of Ciric’s quasi-contraction to cone metric space, and we give some generalized versions of the fixed point theorem of Perov. As corollaries we generalized some results of Zima (1992) [28] and Borkowski et al. (2010) [4] for a Banach space with a non normal cone. The theory is illustrated with some examples.

[1]  Cristina Di Bari,et al.  ϕ-pairs and common fixed points in cone metric spaces , 2008 .

[2]  Naseer Shahzad,et al.  On fixed points of quasi-contraction type multifunctions , 2012, Appl. Math. Lett..

[3]  Quasi-contractions on a nonnormal cone metric space , 2012 .

[4]  Naseer Shahzad,et al.  Some notes on fixed points of quasi-contraction maps , 2010, Appl. Math. Lett..

[5]  Seiyed Mansour Vaezpour,et al.  Some Extensions of Banach's Contraction Principle in Complete Cone Metric Spaces , 2008 .

[6]  Mujahid Abbas,et al.  Fixed and periodic point results in cone metric spaces , 2009, Appl. Math. Lett..

[7]  Mujahid Abbas,et al.  Common fixed point results for noncommuting mappings without continuity in cone metric spaces , 2008 .

[8]  Ljiljana Gajic,et al.  On Ciric maps with a generalized contractive iterate at a point and Fisher's quasi-contractions in cone metric spaces , 2010, Appl. Math. Comput..

[9]  Xian Zhang,et al.  Cone metric spaces and fixed point theorems of contractive mappings , 2007 .

[10]  Radu Precup,et al.  The role of matrices that are convergent to zero in the study of semilinear operator systems , 2009, Math. Comput. Model..

[11]  K. Deimling Nonlinear functional analysis , 1985 .

[12]  Zoran Kadelburg,et al.  On cone metric spaces: A survey , 2011 .

[13]  Vladimir Rakocevic,et al.  Quasi-contraction on a cone metric space , 2009, Appl. Math. Lett..

[14]  A certain fixed point theorem and its applications to integral-functional equations , 1992, Bulletin of the Australian Mathematical Society.

[15]  G. Jungck,et al.  Common Fixed Point Theorems for Weakly Compatible Pairs on Cone Metric Spaces , 2009 .

[16]  Vladimir Rakočević,et al.  Common fixed points for maps on cone metric space , 2008 .

[17]  S. Rezapour,et al.  Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings" , 2008 .

[18]  L. Ciric,et al.  A generalization of Banach’s contraction principle , 1974 .

[19]  M. Zima,et al.  On some fixed-point theorems for generalized contractions and their perturbations , 2010 .

[20]  P. P. Zabrejko K-metric and K-normed linear spaces: survey. , 1997 .

[21]  Edward R. Vrscay,et al.  Generalized fractal transforms and self-similar objects in cone metric spaces , 2012, Comput. Math. Appl..

[22]  Stojan Radenovic,et al.  Remarks on "Quasi-contraction on a cone metric space" , 2009, Appl. Math. Lett..