A graph-Based Approach to WSD Using Relevant Semantic Trees and N-Cliques Model

In this paper we propose a new graph-based approach to solve semantic ambiguity using a semantic net based on WordNet. Our proposal uses an adaptation of the Clique Partitioning Technique to extract sets of strongly related senses. For that, an initial graph is obtained from senses of WordNet combined with the information of several semantic categories from different resources: WordNet Domains, SUMO and WordNet Affect. In order to obtain the most relevant concepts in a sentence we use the Relevant Semantic Trees method. The evaluation of the results has been conducted using the test data set of Senseval-2 obtaining promising results.

[1]  Maguelonne Teisseire,et al.  Natural Language Processing and Information Systems , 2014, Lecture Notes in Computer Science.

[2]  Mark Stevenson,et al.  IIITH: Domain Specific Word Sense Disambiguation , 2010, SemEval@ACL.

[3]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[4]  Andrés Montoyo,et al.  UMCC-DLSI: Integrative Resource for Disambiguation Task , 2010, SemEval@ACL.

[5]  R. Luce,et al.  A method of matrix analysis of group structure , 1949, Psychometrika.

[6]  R. Luce,et al.  Connectivity and generalized cliques in sociometric group structure , 1950, Psychometrika.

[7]  Simone Paolo Ponzetto,et al.  Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems , 2010, ACL.

[8]  Daniel P. Siewiorek,et al.  Automated Synthesis of Data Paths in Digital Systems , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[9]  Carlo Strapparava,et al.  Proceedings of the 5th International Workshop on Semantic Evaluation , 2010 .

[10]  Piek Vossen,et al.  The MEANING Multilingual Central Repository , 2004 .

[11]  Noah E. Friedkin,et al.  Structural Cohesion and Equivalence Explanations of Social Homogeneity , 1984 .

[12]  Carlo Strapparava,et al.  Comparing Ontology-Based and Corpus-Based Domain Annotations in WordNet , 2003 .

[13]  Eneko Agirre,et al.  Personalizing PageRank for Word Sense Disambiguation , 2009, EACL.

[14]  Armando B. Mendes,et al.  An Algorithm to Discover the k-Clique Cover in Networks , 2009, EPIA.

[15]  Andrés Montoyo,et al.  Enriching the Integration of Semantic Resources based on WordNet , 2011, Proces. del Leng. Natural.

[16]  R. J. Mokken,et al.  Cliques, clubs and clans , 1979 .

[17]  Rada Mihalcea,et al.  Unsupervised graph-based word sense disambiguation , 2009 .

[18]  Andrés Montoyo,et al.  Word Sense Disambiguation: A Graph-Based Approach Using N-Cliques Partitioning Technique , 2011, NLDB.

[19]  Andrés Montoyo,et al.  Sentiment Classification Using Semantic Features Extracted from WordNet-based Resources , 2011, WASSA@ACL.

[20]  Andrés Montoyo,et al.  Improving WSD using ISR-WN with Relevant Semantic Trees and SemCor Senses Frequency , 2011, RANLP.

[21]  Paola Velardi,et al.  Structural semantic interconnections: a knowledge-based approach to word sense disambiguation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  A. Campbell,et al.  Progress in Artificial Intelligence , 1995, Lecture Notes in Computer Science.

[23]  Peter Z. Yeh,et al.  Semantic Interpretation of the Web without the Semantic Web: Toward Business-Aware Web Processors , 2007 .

[24]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[25]  Montse Cuadros,et al.  Exploring the Integration of WordNet and FrameNet , 2009 .

[26]  Bonnie J. Dorr,et al.  Spanish EuroWordNet and LCS-based interlingual MT , 1997, MTSUMMIT.

[27]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[28]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[29]  Piek T. J. M. Vossen,et al.  Kyoto: An Integrated System for Specific Domain WSD , 2010, SemEval@ACL.

[30]  C. Fellbaum An Electronic Lexical Database , 1998 .