A comparison between the Pittsburgh and Michigan approaches for the binary PSO algorithm

This paper shows the performance of the binary PSO algorithm as a classification system. These systems are classified in two different perspectives: the Pittsburgh and the Michigan approaches. In order to implement the Michigan approach binary PSO algorithm, the standard PSO dynamic equations are modified, introducing a repulsive force to favor particle competition. A dynamic neighborhood, adapted to classification problems, is also defined. Both classifiers are tested using a reference set of problems, where both classifiers achieve better performance than many classification techniques. The Michigan PSO classifier shows clear advantages over the Pittsburgh one both in terms of success rate and speed. The Michigan PSO can also be generalized to the continuous version of the PSO

[1]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[2]  H. Crichton-Miller Adaptation , 1926 .

[3]  Russell C. Eberhart,et al.  Recent advances in particle swarm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[4]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[5]  Shuyuan Yang,et al.  A quantum particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[6]  Maurice Clerc Binary Particle Swarm Optimisers: toolbox, derivations, and mathematical insights , 2005 .

[7]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[8]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[9]  Riaan Brits Niching strategies for particle swarm optimization , 2005 .

[10]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[12]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[13]  M. S. Voss Principal component particle swarm optimization (PCPSO) , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[14]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[15]  Ester Bernadó-Mansilla,et al.  Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks , 2003, Evolutionary Computation.

[16]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[17]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[18]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[19]  Xiao-Feng Xie,et al.  Hybrid particle swarm optimizer with mass extinction , 2002, IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions.

[20]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  Sebastian Thrun,et al.  The MONK''s Problems-A Performance Comparison of Different Learning Algorithms, CMU-CS-91-197, Sch , 1991 .

[24]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[25]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[26]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[27]  Peter J. Bentley,et al.  Dynamic Search With Charged Swarms , 2002, GECCO.

[28]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[29]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[30]  Tiago Ferra de Sousa,et al.  Particle Swarm based Data Mining Algorithms for classification tasks , 2004, Parallel Comput..

[31]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[32]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[33]  Kenneth A. De Jong,et al.  Learning Concept Classification Rules Using Genetic Algorithms , 1991, IJCAI.

[34]  Sean Saxon,et al.  XCS and the Monk's Problems , 1999, Learning Classifier Systems.