The Accessory Genome of Pseudomonas aeruginosa

SUMMARY Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.

[1]  R. Lavigne,et al.  Bacteriophages of Pseudomonas. , 2010, Future microbiology.

[2]  F. Valerio,et al.  An Rhs-like genetic element is involved in bacteriocin production by Pseudomonas savastanoi pv. savastanoi , 2010, Antonie van Leeuwenhoek.

[3]  P. Courvalin,et al.  Acquisition of multidrug resistance transposon Tn6061 and IS6100-mediated large chromosomal inversions in Pseudomonas aeruginosa clinical isolates. , 2010, Microbiology.

[4]  S. Lory,et al.  The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 Is Transferred via a Novel Type IV Pilus , 2010, Journal of bacteriology.

[5]  J. Fothergill,et al.  Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. , 2010, Journal of medical microbiology.

[6]  Zixin Deng,et al.  Pathogenicity Islands PAPI-1 and PAPI-2 Contribute Individually and Synergistically to the Virulence of Pseudomonas aeruginosa Strain PA14 , 2010, Infection and Immunity.

[7]  P. Taylor,et al.  Bacteriophage‐derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa , 2010, Journal of applied microbiology.

[8]  S. Petrovski,et al.  Tn502 and Tn512 Are res Site Hunters That Provide Evidence of Resolvase-Independent Transposition to Random Sites , 2010, Journal of bacteriology.

[9]  P. H. Roy,et al.  Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7 , 2010, PloS one.

[10]  J. Campos‐García Metabolism of Acyclic Terpenes by Pseudomonas , 2010 .

[11]  H. Riveros-Rosas,et al.  Heavy Metal Resistance in Pseudomonads , 2010 .

[12]  B. Tümmler,et al.  Pseudomonas aeruginosa population biology in chronic obstructive pulmonary disease. , 2009, The Journal of infectious diseases.

[13]  J. Parkhill,et al.  Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement , 2009, BMC Genomics.

[14]  Bruno Pot,et al.  Pseudomonas aeruginosa Population Structure Revisited , 2009, PloS one.

[15]  Nancy D. Hanson,et al.  Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms , 2009, Clinical Microbiology Reviews.

[16]  Kurt E. Williamson,et al.  Acyl-Homoserine Lactones Can Induce Virus Production in Lysogenic Bacteria: an Alternative Paradigm for Prophage Induction , 2009, Applied and Environmental Microbiology.

[17]  S. Pournaras,et al.  Large Dissemination of VIM-2-Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Strains Causing Health Care-Associated Community-Onset Infections , 2009, Journal of Clinical Microbiology.

[18]  P. Hsueh,et al.  Dissemination of transposon Tn6001 in carbapenem-non-susceptible and extensively drug-resistant Pseudomonas aeruginosa in Taiwan , 2009, The Journal of antimicrobial chemotherapy.

[19]  A. Hauser The type III secretion system of Pseudomonas aeruginosa: infection by injection , 2009, Nature Reviews Microbiology.

[20]  S. Lory,et al.  Role of Horizontal Gene Transfer in the Evolution of Pseudomonas aeruginosa Virulence. , 2009, Genome dynamics.

[21]  S. Miller,et al.  The Multifaceted Proteins MvaT and MvaU, Members of the H-NS Family, Control Arginine Metabolism, Pyocyanin Synthesis, and Prophage Activation in Pseudomonas aeruginosa PAO1 , 2009, Journal of bacteriology.

[22]  P. Cornelis,et al.  Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. , 2009, Environmental microbiology.

[23]  A. Matsubara,et al.  Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. , 2009, The Journal of antimicrobial chemotherapy.

[24]  G. Volckaert,et al.  The adsorption of Pseudomonas aeruginosa bacteriophage phiKMV is dependent on expression regulation of type IV pili genes. , 2009, FEMS microbiology letters.

[25]  A. Oliver,et al.  Nosocomial Outbreak of a Non-Cefepime-Susceptible Ceftazidime-Susceptible Pseudomonas aeruginosa Strain Overexpressing MexXY-OprM and Producing an Integron-Borne PSE-1 ß-Lactamase , 2009, Journal of Clinical Microbiology.

[26]  P. Nordmann,et al.  The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. , 2009, The Lancet. Infectious diseases.

[27]  D. McDougald,et al.  The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage , 2009, The ISME Journal.

[28]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[29]  E. Protonotariou,et al.  Molecular Epidemiology of Outbreak-Related Pseudomonas aeruginosa Strains Carrying the Novel Variant blaVIM-17 Metallo-β-Lactamase Gene , 2009, Antimicrobial Agents and Chemotherapy.

[30]  Julian Parkhill,et al.  Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. , 2008, Genome research.

[31]  D. Crook,et al.  Genomic islands: tools of bacterial horizontal gene transfer and evolution , 2008, FEMS microbiology reviews.

[32]  G. O’Toole,et al.  Interaction between Bacteriophage DMS3 and Host CRISPR Region Inhibits Group Behaviors of Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[33]  J. Rello,et al.  Genomic islands of Pseudomonas aeruginosa. , 2009, FEMS microbiology letters.

[34]  J. Jeong,et al.  Analysis of a novel class 1 integron containing metallo-β-lactamase gene VIM-2 in Pseudomonas aeruginosa , 2009, The Journal of Microbiology.

[35]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[36]  K. Turner,et al.  H-NS family members function coordinately in an opportunistic pathogen , 2008, Proceedings of the National Academy of Sciences.

[37]  P. Nordmann,et al.  Identification of PER-1 extended-spectrum beta-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. , 2008, FEMS immunology and medical microbiology.

[38]  S. Yamasaki,et al.  Occurrence and Characteristics of Class 1 and 2 Integrons in Pseudomonas aeruginosa Isolates from Patients in Southern China , 2008, Journal of Clinical Microbiology.

[39]  J. Kelly,et al.  Modification of Pseudomonas aeruginosa Pa5196 Type IV Pilins at Multiple Sites with d-Araf by a Novel GT-C Family Arabinosyltransferase, TfpW , 2008, Journal of bacteriology.

[40]  Daniel M. Stoebel,et al.  Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. , 2008, Microbiology.

[41]  J. Rello,et al.  Hybrid Pathogenicity Island PAGI-5 Contributes to the Highly Virulent Phenotype of a Pseudomonas aeruginosa Isolate in Mammals , 2008, Journal of bacteriology.

[42]  P. Nordmann,et al.  Metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from a large tertiary centre in Kenya. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[43]  Ronald N. Jones,et al.  Complete Sequence of p07-406, a 24,179-Base-Pair Plasmid Harboring the blaVIM-7 Metallo-β-Lactamase Gene in a Pseudomonas aeruginosa Isolate from the United States , 2008, Antimicrobial Agents and Chemotherapy.

[44]  J. Klockgether,et al.  Transcript profiling of the Pseudomonas aeruginosa genomic islands PAGI-2 and pKLC102. , 2008, Microbiology.

[45]  David A. D'Argenio,et al.  Large-insert genome analysis technology detects structural variation in Pseudomonas aeruginosa clinical strains from cystic fibrosis patients. , 2008, Genomics.

[46]  S. Kjelleberg,et al.  Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae , 2008, The ISME Journal.

[47]  J. R. van der Meer,et al.  Host and invader impact of transfer of the clc genomic island into Pseudomonas aeruginosa PAO1 , 2008, Proceedings of the National Academy of Sciences.

[48]  H. Abd,et al.  Pseudomonas aeruginosa Utilises Its Type III Secretion System to Kill the Free‐Living Amoeba Acanthamoeba castellanii , 2008, The Journal of eukaryotic microbiology.

[49]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[50]  J. Quinn,et al.  Genetic Structures at the Origin of Acquisition of the β-Lactamase blaKPC Gene , 2008, Antimicrobial Agents and Chemotherapy.

[51]  G. Church,et al.  Bacteria Subsisting on Antibiotics , 2007, Science.

[52]  P. Nordmann,et al.  Long-term evolution of a nosocomial outbreak of Pseudomonas aeruginosa producing VIM-2 metallo-enzyme. , 2008, The Journal of hospital infection.

[53]  Rolf Bernd Rehm Pseudomonas : model organism, pathogen, cell factory , 2008 .

[54]  Jesse R. Zaneveld,et al.  Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns. , 2008, Microbiology.

[55]  B. Tümmler,et al.  In silico comparison of pKLC102-like genomic islands of Pseudomonas aeruginosa. , 2007, FEMS microbiology letters.

[56]  G. Pier Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. , 2007, International journal of medical microbiology : IJMM.

[57]  D. Livermore,et al.  Outbreak of Pseudomonas aeruginosa Infections with PER-1 Extended-Spectrum β-Lactamase in Warsaw, Poland: Further Evidence for an International Clonal Complex , 2007, Journal of Clinical Microbiology.

[58]  J. Mansfield,et al.  Evolution of microbial virulence: the benefits of stress. , 2007, Trends in genetics : TIG.

[59]  P. Lebecque,et al.  Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[60]  Stephen Lory,et al.  MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands , 2007, Nucleic Acids Res..

[61]  Christian Weinel,et al.  Population structure of Pseudomonas aeruginosa , 2007, Proceedings of the National Academy of Sciences.

[62]  M. Buckle,et al.  H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing , 2007, Nature Structural &Molecular Biology.

[63]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[64]  J. Klockgether,et al.  Diversity of the Abundant pKLC102/PAGI-2 Family of Genomic Islands in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[65]  D. Ferguson,et al.  Novel Type IV Secretion System Involved in Propagation of Genomic Islands , 2006, Journal of bacteriology.

[66]  J. Brisson,et al.  Glycosylation of Pseudomonas aeruginosa Strain Pa5196 Type IV Pilins with Mycobacterium-Like α-1,5-Linked d-Araf Oligosaccharides , 2006, Journal of bacteriology.

[67]  Stephen Lory,et al.  Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa , 2006, Proceedings of the National Academy of Sciences.

[68]  C. Ronson,et al.  Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS , 2006, Molecular microbiology.

[69]  Li Li,et al.  Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial , 2006, Genome Biology.

[70]  A. Oliver,et al.  PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa , 2006, Molecular microbiology.

[71]  Didier Mazel,et al.  Integrons: agents of bacterial evolution , 2006, Nature Reviews Microbiology.

[72]  J. Hinton,et al.  H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria , 2006, PLoS pathogens.

[73]  R. Albano,et al.  Characterization of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-beta-lactamase in a hospital located in Rio de Janeiro, Brazil. , 2006, Microbial drug resistance.

[74]  R. Ramphal,et al.  Genetic Basis : Structural and Pseudomonas aeruginosa Glycosylation of b-Type Flagellin of , 2006 .

[75]  S. Lory,et al.  Acquisition and Evolution of the exoU Locus in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[76]  A. Pühler,et al.  The clc Element of Pseudomonas sp. Strain B13, a Genomic Island with Various Catabolic Properties , 2006, Journal of bacteriology.

[77]  J. Bartlett,et al.  Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[78]  I. Roberts,et al.  The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD, RhsA and a multi‐protein complex at the pole of the cell , 2006, Molecular microbiology.

[79]  J. Pelletier,et al.  Comparative Genomic Analysis of 18 Pseudomonas aeruginosa Bacteriophages , 2006, Journal of bacteriology.

[80]  A. Prince Flagellar activation of epithelial signaling. , 2006, American journal of respiratory cell and molecular biology.

[81]  R. Ramphal,et al.  Roles of Specific Amino Acids in the N Terminus of Pseudomonas aeruginosa Flagellin and of Flagellin Glycosylation in the Innate Immune Response , 2005, Infection and Immunity.

[82]  D. Stolz,et al.  Influence of Pilin Glycosylation on Pseudomonas aeruginosa 1244 Pilus Function , 2005, Infection and Immunity.

[83]  William E Bentley,et al.  Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide , 2005, BMC Genomics.

[84]  P. Nordmann,et al.  BEL-1, a Novel Clavulanic Acid-Inhibited Extended-Spectrum β-Lactamase, and the Class 1 Integron In120 in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[85]  Stefan Wuertz,et al.  Studying plasmid horizontal transfer in situ: a critical review , 2005, Nature Reviews Microbiology.

[86]  T. Kirikae,et al.  Multidrug-Resistant Pseudomonas aeruginosa Strain That Caused an Outbreak in a Neurosurgery Ward and Its aac(6′)-Iae Gene Cassette Encoding a Novel Aminoglycoside Acetyltransferase , 2005, Antimicrobial Agents and Chemotherapy.

[87]  V. Dubois,et al.  Prolonged Outbreak of Infection Due to TEM-21-Producing Strains of Pseudomonas aeruginosa and Enterobacteria in a Nursing Home , 2005, Journal of Clinical Microbiology.

[88]  J. Quinn,et al.  First Nosocomial Outbreak of Pseudomonas aeruginosa Producing an Integron-Borne Metallo-β-Lactamase (VIM-2) in the United States , 2005, Antimicrobial Agents and Chemotherapy.

[89]  Michelle D. Brazas,et al.  Ciprofloxacin Induction of a Susceptibility Determinant in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[90]  G. Rossolini,et al.  Nosocomial Outbreak Caused by Multidrug-Resistant Pseudomonas aeruginosa Producing IMP-13 Metallo-β-Lactamase , 2005, Journal of Clinical Microbiology.

[91]  U. Römling,et al.  Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. , 2005, Journal of medical microbiology.

[92]  S. Lory,et al.  Role of Motility and Flagellin Glycosylation in the Pathogenesis of Pseudomonas aeruginosa Burn Wound Infections , 2005, Infection and Immunity.

[93]  Ludwig Triest,et al.  Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. , 2005, Environmental microbiology.

[94]  P. Nordmann,et al.  Genetic Environment and Expression of the Extended-Spectrum β-Lactamase blaPER-1 Gene in Gram-Negative Bacteria , 2005, Antimicrobial Agents and Chemotherapy.

[95]  Timothy R. Walsh,et al.  Metallo-β-Lactamases: the Quiet before the Storm? , 2005, Clinical Microbiology Reviews.

[96]  Maynard V. Olson,et al.  Evidence for Diversifying Selection at the Pyoverdine Locus of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[97]  Vincent T. Lee,et al.  Activities of Pseudomonas aeruginosa Effectors Secreted by the Type III Secretion System In Vitro and during Infection , 2005, Infection and Immunity.

[98]  A. Kropinski,et al.  The genome of the Pseudomonas aeruginosa generalized transducing bacteriophage F116. , 2005, Gene.

[99]  G. Cornaglia,et al.  Clonal Relatedness and Conserved Integron Structures in Epidemiologically Unrelated Pseudomonas aeruginosa Strains Producing the VIM-1 Metallo-β-Lactamase from Different Italian Hospitals , 2005, Antimicrobial Agents and Chemotherapy.

[100]  T. Walsh The emergence and implications of metallo-β-lactamases in Gram-negative bacteria , 2005 .

[101]  P. Nordmann,et al.  Metallo-beta-lactamases: the quiet before the storm? , 2005, Clinical microbiology reviews.

[102]  T. Walsh The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[103]  R. MacLaren,et al.  National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002 , 2004, Antimicrobial Agents and Chemotherapy.

[104]  Derrick W. Crook,et al.  Transferable Antibiotic Resistance Elements in Haemophilus influenzae Share a Common Evolutionary Origin with a Diverse Family of Syntenic Genomic Islands , 2004, Journal of bacteriology.

[105]  S. Kjelleberg,et al.  Bacteriophage and Phenotypic Variation in Pseudomonas aeruginosa Biofilm Development , 2004, Journal of bacteriology.

[106]  A. Hauser,et al.  Relative Contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to Virulence in the Lung , 2004, Infection and Immunity.

[107]  C. Kitts,et al.  Complete Genomic Sequence of Bacteriophage B3, a Mu-Like Phage of Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[108]  L. Eberl,et al.  Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. , 2004, International journal of medical microbiology : IJMM.

[109]  J. Hacker,et al.  Excision of the high‐pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor , 2004, Molecular microbiology.

[110]  Vincent Burrus,et al.  Shaping bacterial genomes with integrative and conjugative elements. , 2004, Research in microbiology.

[111]  P. Nordmann,et al.  Nosocomial Outbreak of Extended-Spectrum β-Lactamase SHV-5-Producing Isolates of Pseudomonas aeruginosa in Athens, Greece , 2004, Antimicrobial Agents and Chemotherapy.

[112]  H. Ochman,et al.  Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. , 2004, Genome research.

[113]  G. O’Toole,et al.  Isolation and Characterization of a Generalized Transducing Phage for Pseudomonas aeruginosa Strains PAO1 and PA14 , 2004, Journal of bacteriology.

[114]  M. Gillings,et al.  Mobile Gene Cassettes: A Fundamental Resource for Bacterial Evolution , 2004, The American Naturalist.

[115]  L. Burrows,et al.  Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. , 2004, Microbiology.

[116]  R. Ramphal,et al.  Structural and Genetic Characterization of Glycosylation of Type a Flagellin in Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[117]  Ulrich Dobrindt,et al.  Genomic islands in pathogenic and environmental microorganisms , 2004, Nature Reviews Microbiology.

[118]  S. Lory,et al.  Sequence Polymorphism in the Glycosylation Island and Flagellins of Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[119]  Daniel G. Lee,et al.  The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[120]  J. Klockgether,et al.  Sequence Analysis of the Mobile Genome Island pKLC102 of Pseudomonas aeruginosa C , 2004, Journal of bacteriology.

[121]  D. Guttman,et al.  Complete Sequence and Evolutionary Genomic Analysis of the Pseudomonas aeruginosa Transposable Bacteriophage D3112 , 2004, Journal of bacteriology.

[122]  P. Bennett Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. , 2004, Methods in molecular biology.

[123]  W. Reineke,et al.  Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad , 2004, Archives of Microbiology.

[124]  J. Rello,et al.  Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. , 2003, The Journal of infectious diseases.

[125]  David A. D'Argenio,et al.  Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. , 2003, Environmental microbiology.

[126]  Cecilia Dahlberg,et al.  Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. , 2003, Genetics.

[127]  J. Lawrence,et al.  Lateral gene transfer: when will adolescence end? , 2003, Molecular microbiology.

[128]  P. Nordmann,et al.  IS1999 Increases Expression of the Extended-Spectrum β-Lactamase VEB-1 in Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[129]  M. Waldor,et al.  Control of SXT Integration and Excision , 2003, Journal of bacteriology.

[130]  J. R. van der Meer,et al.  Unusual Integrase Gene Expression on the clc Genomic Island in Pseudomonas sp. Strain B13 , 2003, Journal of bacteriology.

[131]  J. R. van der Meer,et al.  Characterization of two alternative promoters for integrase expression in the clc genomic island of Pseudomonas sp. strain B13 , 2003, Molecular microbiology.

[132]  Qing Yang,et al.  Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Blair S Nield,et al.  The gene cassette metagenome is a basic resource for bacterial genome evolution. , 2003, Environmental microbiology.

[134]  Maynard V. Olson,et al.  Whole-Genome Sequence Variation among Multiple Isolates of Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[135]  S. West,et al.  Cooperation, virulence and siderophore production in bacterial parasites , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[136]  W. Jarvis Epidemiology and Control of Pseudomonas Aeruginosa Infections in the Intensive Care Unit , 2003 .

[137]  Jordi Rello,et al.  Severe Infections Caused by Pseudomonas Aeruginosa , 2003, Perspectives on Critical Care Infectious Diseases.

[138]  R. Merkl,et al.  Gene Islands Integrated into tRNAGly Genes Confer Genome Diversity on a Pseudomonas aeruginosa Clone , 2002, Journal of bacteriology.

[139]  Guillaume Pavlovic,et al.  Conjugative transposons: the tip of the iceberg , 2002, Molecular microbiology.

[140]  M. Wolfgang,et al.  Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression , 2002, Molecular microbiology.

[141]  V. Dubois,et al.  Clinical Strain of Pseudomonas aeruginosa Carrying a blaTEM-21 Gene Located on a Chromosomal Interrupted TnA Type Transposon , 2002, Antimicrobial Agents and Chemotherapy.

[142]  Maynard V. Olson,et al.  Genetic Variation at the O-Antigen Biosynthetic Locus in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[143]  P. Nordmann,et al.  Emerging carbapenemases in Gram-negative aerobes. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[144]  Frederick M. Ausubel,et al.  Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation , 2002, Nature.

[145]  J. Rello,et al.  Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. , 2002, Critical care medicine.

[146]  Kelly P Williams,et al.  Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. , 2002, Nucleic acids research.

[147]  M. Mergeay,et al.  Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria. , 2002, Environmental microbiology.

[148]  P. Cornelis,et al.  Siderophore-mediated iron uptake in fluorescent Pseudomonas: characterization of the pyoverdine-receptor binding site of three cross-reacting pyoverdines. , 2002, Archives of biochemistry and biophysics.

[149]  Richard A. Moore,et al.  Nosocomial Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa with a New blaIMP Allele, blaIMP-7 , 2002, Antimicrobial Agents and Chemotherapy.

[150]  Jacques Mahillon,et al.  Insertion Sequences revisited , 2002 .

[151]  Alan M. Lambowitz,et al.  Mobile DNA III , 2002 .

[152]  J. Heritage,et al.  SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. , 2001, The Journal of antimicrobial chemotherapy.

[153]  J. E. Peters,et al.  Tn7: smarter than we thought , 2001, Nature Reviews Molecular Cell Biology.

[154]  Ralf Geiben-Lynn,et al.  Flagellin inhibits Myoviridae phage φCTX infection of Pseudomonas aeruginosa strain GuA18: purification and mapping of binding site , 2001, Archives of Microbiology.

[155]  K. M. Helena Nevalainen,et al.  Gene Cassette PCR: Sequence-Independent Recovery of Entire Genes from Environmental DNA , 2001, Applied and Environmental Microbiology.

[156]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[157]  A. Hauser,et al.  Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. , 2001, Microbiology.

[158]  R. Munson,et al.  Genetic Analysis of a Pyocin-Resistant Lipooligosaccharide (LOS) Mutant of Haemophilus ducreyi: Restoration of Full-Length LOS Restores Pyocin Sensitivity , 2001, Journal of bacteriology.

[159]  S. Lory,et al.  A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[160]  R. Savel,et al.  Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. , 2001, The Journal of infectious diseases.

[161]  S. Denyer,et al.  Reduction in Exopolysaccharide Viscosity as an Aid to Bacteriophage Penetration through Pseudomonas aeruginosa Biofilms , 2001, Applied and Environmental Microbiology.

[162]  J Hacker,et al.  Pathogenicity islands: the tip of the iceberg. , 2001, Microbes and infection.

[163]  G. Eliopoulos,et al.  New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[164]  L. Burrows,et al.  Three‐component‐mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3 , 2001, Molecular microbiology.

[165]  S. Lory,et al.  Identification of a Genomic Island Present in the Majority of Pathogenic Isolates of Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[166]  M. Vasil,et al.  Genetic and biochemical analyses of a eukaryotic‐like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model , 2001, Molecular microbiology.

[167]  A. Kropinski Sequence of the Genome of the Temperate, Serotype-Converting,Pseudomonas aeruginosa Bacteriophage D3 , 2000, Journal of bacteriology.

[168]  H. Mori,et al.  The R‐type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F‐type is related to lambda phage , 2000, Molecular microbiology.

[169]  N. Woodford,et al.  Carbapenemases: a problem in waiting? , 2000, Current opinion in microbiology.

[170]  J. Klockgether,et al.  Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106 kb plasmid at two tRNA(Lys) gene loci in sequential Pseudomonas aeruginosa airway isolates. , 2000, Microbiology.

[171]  J. Mattick,et al.  An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. , 2000, Microbiology.

[172]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[173]  Jean-Marie Meyer,et al.  Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species , 2000, Archives of Microbiology.

[174]  B. Tümmler,et al.  Sequence Diversity of Pseudomonas aeruginosa: Impact on Population Structure and Genome Evolution , 2000, Journal of bacteriology.

[175]  M. G. Lorenz,et al.  Type IV Pilus Genes pilA andpilC of Pseudomonas stutzeri Are Required for Natural Genetic Transformation, and pilA Can Be Replaced by Corresponding Genes from Nontransformable Species , 2000, Journal of bacteriology.

[176]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .

[177]  C W Hill Large genomic sequence repetitions in bacteria: lessons from rRNA operons and Rhs elements. , 1999, Research in microbiology.

[178]  M. Chandler,et al.  IS elements as constituents of bacterial genomes. , 1999, Research in microbiology.

[179]  T. Martin,et al.  Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. , 1999, The Journal of clinical investigation.

[180]  David S. Eisenberg,et al.  Finding families for genomic ORFans , 1999, Bioinform..

[181]  R. Hall,et al.  Transposon Tn21, Flagship of the Floating Genome , 1999, Microbiology and Molecular Biology Reviews.

[182]  Y. Hou Transfer RNAs and pathogenicity islands. , 1999, Trends in biochemical sciences.

[183]  P. Nordmann,et al.  Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. , 1999, FEMS microbiology letters.

[184]  J. Goldberg,et al.  Characterization of the Serogroup O11 O-Antigen Locus of Pseudomonas aeruginosa PA103 , 1999, Journal of bacteriology.

[185]  J. Mattick,et al.  Pseudomonas aeruginosa Gene Products PilT and PilU Are Required for Cytotoxicity In Vitro and Virulence in a Mouse Model of Acute Pneumonia , 1999, Infection and Immunity.

[186]  P. Cornelis,et al.  Uptake of Pyocin S3 Occurs through the Outer Membrane Ferripyoverdine Type II Receptor of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[187]  Y. Carmeli,et al.  Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. , 1999, Archives of internal medicine.

[188]  P. Nordmann,et al.  An SHV-Derived Extended-Spectrum β-Lactamase in Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[189]  Y. Carmeli,et al.  Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. , 1999, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[190]  G. Paniagua-Contreras,et al.  The Clinically Isolated FIZ15 Bacteriophage Causes Lysogenic Conversion in Pseudomonas aeruginosa PAO1 , 1999, Current Microbiology.

[191]  M. Ohnishi,et al.  The complete nucleotide sequence of φCTX, a cytotoxin‐converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages , 1999, Molecular microbiology.

[192]  P M Bennett,et al.  Integrons and gene cassettes: a genetic construction kit for bacteria. , 1999, The Journal of antimicrobial chemotherapy.

[193]  P. Nordmann,et al.  An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. , 1999, Antimicrobial agents and chemotherapy.

[194]  J. R. van der Meer,et al.  Evolution of a Pathway for Chlorobenzene Metabolism Leads to Natural Attenuation in Contaminated Groundwater , 1998, Applied and Environmental Microbiology.

[195]  A. Zehnder,et al.  Int-B13, an Unusual Site-Specific Recombinase of the Bacteriophage P4 Integrase Family, Is Responsible for Chromosomal Insertion of the 105-Kilobase clc Element ofPseudomonas sp. Strain B13 , 1998, Journal of bacteriology.

[196]  R. Ugalde,et al.  Molecular Cloning and Characterization of cgs, theBrucella abortus Cyclic β(1-2) Glucan Synthetase Gene: Genetic Complementation of Rhizobium meliloti ndvB andAgrobacterium tumefaciens chvB Mutants , 1998, Journal of bacteriology.

[197]  J. R. van der Meer,et al.  Chromosomal Integration, Tandem Amplification, and Deamplification in Pseudomonas putida F1 of a 105-Kilobase Genetic Element Containing the Chlorocatechol Degradative Genes from Pseudomonas sp. Strain B13 , 1998, Journal of bacteriology.

[198]  Guy Plunkett,et al.  The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. , 1998, Nucleic acids research.

[199]  J. R. van der Meer,et al.  Low-Frequency Horizontal Transfer of an Element Containing the Chlorocatechol Degradation Genes fromPseudomonas sp. Strain B13 to Pseudomonas putidaF1 and to Indigenous Bacteria in Laboratory-Scale Activated-Sludge Microcosms , 1998, Applied and Environmental Microbiology.

[200]  J. Engel,et al.  PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence , 1998, Molecular microbiology.

[201]  A. Prince,et al.  Role of Flagella in Pathogenesis ofPseudomonas aeruginosa Pulmonary Infection , 1998, Infection and Immunity.

[202]  R M Hall,et al.  Structure and function of 59‐base element recombination sites associated with mobile gene cassettes , 1997, Molecular microbiology.

[203]  Lei Zhu,et al.  ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury , 1997, Molecular microbiology.

[204]  H. Hahn,et al.  The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa--a review. , 1997, Gene.

[205]  D. Stein,et al.  Cloning, complementation, and characterization of an rfaE homolog from Neisseria gonorrhoeae , 1996, Journal of bacteriology.

[206]  J. Barbieri,et al.  Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa , 1996, Journal of bacteriology.

[207]  J. A. Hobden,et al.  Pseudomonas keratitis. The role of an uncharacterized exoprotein, protease IV, in corneal virulence. , 1996, Investigative ophthalmology & visual science.

[208]  R M Hall,et al.  Gene cassettes: a new class of mobile element. , 1995, Microbiology.

[209]  J. Blahova,et al.  A bi-modal transfer of antibiotic resistance by conjugation and transduction from an imipenem-resistant strain of Pseudomonas aeruginosa. , 1995, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[210]  G. Bjune,et al.  Short-chain lipopolysaccharide mutants of serogroup B Neisseria meningitidis of potential value for production of outer membrane vesicle vaccines. , 1995, Microbial pathogenesis.

[211]  P. Castric pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. , 1995, Microbiology.

[212]  H. Tang,et al.  Role of Pseudomonas aeruginosa pili in acute pulmonary infection , 1995, Infection and immunity.

[213]  W. Sierralta,et al.  Comparison of type IV-pilin genes of Pseudomonas aeruginosa of various habitats has uncovered a novel unusual sequence. , 1995, FEMS microbiology letters.

[214]  D. Lyras,et al.  The surface exclusion system of RP1: investigation of the roles of trbJ and trbK in the surface exclusion, transfer, and slow-growth phenotypes. , 1994, Plasmid.

[215]  J. Blahova,et al.  Transfer, by conjugation and transduction, of resistance to ceftazidime and cefotaxime from the same clinical isolate of Pseudomonas aeruginosa. , 1994, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[216]  D. Vlazny,et al.  Rhs elements of Escherichia coli: a family of genetic composites each encoding a large mosaic protein , 1994, Molecular microbiology.

[217]  H. Masoud,et al.  Characterization of lipopolysaccharide-deficient mutants of Pseudomonas aeruginosa derived from serotypes O3, O5, and O6 , 1994, Infection and immunity.

[218]  R. Smith,et al.  Pseudomonas aeruginosa cytotoxin as a pathogenicity factor in a systemic infection of leukopenic mice. , 1994, Toxicon : official journal of the International Society on Toxinology.

[219]  D. Hill,et al.  DNA sequence of the filamentous bacteriophage Pf1. , 1991, Journal of molecular biology.

[220]  R. Schmitt,et al.  The Tn21 subgroup of bacterial transposable elements. , 1990, Plasmid.

[221]  J. Griffiss,et al.  Structural models for the cell surface lipooligosaccharides of Neisseria gonorrhoeae and Haemophilus influenzae. , 1990, Biomedical & environmental mass spectrometry.

[222]  P. Liu,et al.  Three new major somatic antigens of Pseudomonas aeruginosa , 1990, Journal of clinical microbiology.

[223]  A. Darzins,et al.  Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 require pili and surface growth for adsorption , 1990, Journal of bacteriology.

[224]  P. Bennett,et al.  Characterization of Pseudomonas mercury-resistance transposon Tn502, which has a preferred insertion site in RP1. , 1989, Journal of general microbiology.

[225]  R. Lenski,et al.  Effects of carriage and expression of the Tn10 tetracycline-resistance operon on the fitness of Escherichia coli K12. , 1989, Molecular biology and evolution.

[226]  J. Chastre,et al.  Nosocomial pneumonia in patients receiving continuous mechanical ventilation. Prospective analysis of 52 episodes with use of a protected specimen brush and quantitative culture techniques. , 1989, The American review of respiratory disease.

[227]  B. Iglewski,et al.  The contribution of exoproducts to virulence of Pseudomonas aeruginosa. , 1986, Canadian journal of microbiology.

[228]  G. Edlin,et al.  Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. , 1985, Gene.

[229]  Akhverdian Vz,et al.  Wide distribution of transposable phages in natural Pseudomonas aeruginosa populations , 1984 .

[230]  R. Lin,et al.  A repetitive DNA sequence, rhs, responsible for duplications within the Escherichia coli K-12 chromosome. , 1984, Journal of molecular biology.

[231]  J. Fyfe,et al.  Revised pyocin typing method for Pseudomonas aeruginosa , 1984, Journal of clinical microbiology.

[232]  T. Pitt,et al.  Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa , 1984, Infection and immunity.

[233]  T. V. Gerasimova,et al.  [Wide distribution of transposable phages in natural Pseudomonas aeruginosa populations]. , 1984, Genetika.

[234]  A. Kropinski,et al.  O-antigen conversion in Pseudomonas aeruginosa PAO1 by bacteriophage D3 , 1983, Journal of bacteriology.

[235]  G. Bodey,et al.  Infections caused by Pseudomonas aeruginosa. , 1983, Reviews of infectious diseases.

[236]  S. Cryz,et al.  Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats , 1982, Infection and immunity.

[237]  John E. Bennett,et al.  Principles and practice of infectious diseases. Vols 1 and 2. , 1979 .

[238]  Y. Takeda,et al.  Subunit arrangement in the extended sheath of pyocin R. , 1975, Journal of biochemistry.

[239]  J. Govan Studies on the pyocins of Pseudomonas aeruginosa: morphology and mode of action of contractile pyocins. , 1974, Journal of general microbiology.

[240]  D. E. Bradley A pilus-dependent Pseudomonas aeruginosa bacteriophage with a long noncontractile tail. , 1973, Virology.

[241]  F. Egami,et al.  On the purification and some properties of a pyocin, a bacteriocin produced by Pseudomonas aeruginosa. , 1962, Life sciences.

[242]  B. W. Holloway,et al.  Lysogeny in Pseudomonas aeruginosa. , 1960, The Australian journal of experimental biology and medical science.

[243]  B. Holloway Genetic recombination in Pseudomonas aeruginosa. , 1955, Journal of general microbiology.

[244]  F. Jacob [Induced biosynthesis and mode of action of a pyocine, antibiotic produced by Pseudomonas aeruginosa]. , 1954, Annales de l'Institut Pasteur.