Strong and Weak Acyclicity in Iterative Voting

We cast the various different models used for the analysis of iterative voting schemes into a general framework, consistent with the literature on acyclicity in games. More specifically, we classify convergence results based on the underlying assumptions on the agent scheduler (the order of players) and the action scheduler (the response played by the agent).

[1]  Nikolai S. Kukushkin,et al.  Acyclicity of improvements in finite game forms , 2011, Int. J. Game Theory.

[2]  Jason R. Marden,et al.  Regret based dynamics: convergence in weakly acyclic games , 2007, AAMAS '07.

[3]  Jonathan K. Hodge,et al.  The potential of iterative voting to solve the separability problem in referendum elections , 2013, Theory and Decision.

[4]  Ulrich Endriss,et al.  Voter response to iterated poll information , 2012, AAMAS.

[5]  Michael H. Bowling,et al.  Convergence and No-Regret in Multiagent Learning , 2004, NIPS.

[6]  Reshef Meir,et al.  Plurality Voting Under Uncertainty , 2014, AAAI.

[7]  Jerry S. Kelly,et al.  STRATEGY-PROOFNESS AND SOCIAL CHOICE FUNCTIONS WITHOUT SINGLEVALUEDNESS , 1977 .

[8]  I. Milchtaich,et al.  Congestion Games with Player-Specific Payoff Functions , 1996 .

[9]  Augustin M. Cournot Cournot, Antoine Augustin: Recherches sur les principes mathématiques de la théorie des richesses , 2019, Die 100 wichtigsten Werke der Ökonomie.

[10]  A. Roth The college admissions problem is not equivalent to the marriage problem , 1985 .

[11]  Mark C. Wilson,et al.  Best Reply Dynamics for Scoring Rules , 2012, ECAI.

[12]  H. Young,et al.  The Evolution of Conventions , 1993 .

[13]  Toby Walsh,et al.  Restricted Manipulation in Iterative Voting: Condorcet Efficiency and Borda Score , 2013, ADT.

[14]  Omer Lev,et al.  Convergence of iterative voting , 2012, AAMAS.

[15]  Lirong Xia,et al.  Sequential voting rules and multiple elections paradoxes , 2007, TARK '07.

[16]  Svetlana Obraztsova,et al.  Plurality Voting with Truth-Biased Agents , 2013, SAGT.

[17]  Vladimir Gurvich,et al.  Acyclic, or totally tight, two-person game forms: Characterization and main properties , 2010, Discret. Math..

[18]  Neelam Gohar,et al.  Manipulative voting dynamics , 2012 .

[19]  Nikolai S. Kukushkin,et al.  Perfect Information and Potential Games , 2002, Games Econ. Behav..

[20]  Simina Brânzei,et al.  How Bad Is Selfish Voting? , 2013, AAAI.

[21]  Omer Lev,et al.  Convergence and Quality of Iterative Voting under Non-Scoring Rules: (Extended Abstract) , 2016, AAMAS.

[22]  Edith Elkind,et al.  Gibbard-Satterthwaite Games , 2015, IJCAI.

[23]  Nicholas R. Jennings,et al.  On the Convergence of Iterative Voting: How Restrictive Should Restricted Dynamics Be? , 2015, AAAI.

[24]  Omer Lev,et al.  Analysis of Equilibria in Iterative Voting Schemes , 2015, AAAI.

[25]  N. Kukushkin Potential games: a purely ordinal approach , 1999 .

[26]  Nicholas R. Jennings,et al.  Iterative voting and acyclic games , 2017, Artif. Intell..

[27]  Nicholas R. Jennings,et al.  Convergence to Equilibria in Plurality Voting , 2010, AAAI.

[28]  Alex Fabrikant,et al.  On the Structure of Weakly Acyclic Games , 2010, Theory of Computing Systems.

[29]  Vladimir Gurvich,et al.  On acyclicity of games with cycles , 2010, Discret. Appl. Math..

[30]  Krzysztof R. Apt,et al.  A classification of weakly acyclic games , 2015 .

[31]  Omer Lev,et al.  A local-dominance theory of voting equilibria , 2014, EC.

[32]  L. Shapley,et al.  Potential Games , 1994 .

[33]  L. Shapley,et al.  REGULAR ARTICLEPotential Games , 1996 .

[34]  P. Gärdenfors Manipulation of social choice functions , 1976 .

[35]  Tilman B oumi rgers PURE STRATEGY DOMINANCE , 1993 .