Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries

Na-O layer provides Na+ diffusion pathway and storage site, whereas benzene layer provides e−conduction pathway and redox center. Organic carbonyl compounds represent a promising class of electrode materials for secondary batteries; however, the storage mechanism still remains unclear. We take Na2C6H2O4 as an example to unravel the mechanism. It consists of alternating Na-O octahedral inorganic layer and π-stacked benzene organic layer in spatial separation, delivering a high reversible capacity and first coulombic efficiency. The experiment and calculation results reveal that the Na-O inorganic layer provides both Na+ ion transport pathway and storage site, whereas the benzene organic layer provides electron transport pathway and redox center. Our contribution provides a brand-new insight in understanding the storage mechanism in inorganic-organic layered host and opens up a new exciting direction for designing new materials for secondary batteries.

[1]  Yuesheng Wang,et al.  Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries , 2015 .

[2]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[3]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[4]  P. Hagenmuller,et al.  A nasicon-type phase as intercalation electrode: NaTi2(PO4)3 , 1987 .

[5]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[6]  Hiroshi Senoh,et al.  Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries , 2014, Scientific Reports.

[7]  Haoshen Zhou,et al.  An energy storage principle using bipolar porous polymeric frameworks. , 2012, Angewandte Chemie.

[8]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[9]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[10]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[11]  Jun Chen,et al.  Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries , 2013 .

[12]  Jun Chen,et al.  All organic sodium-ion batteries with Na₄C₈H₂O₆. , 2014, Angewandte Chemie.

[13]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[14]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[15]  Tetsuo Sakai,et al.  High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries , 2010 .

[16]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[17]  Dong-Hwa Seo,et al.  Biologically inspired pteridine redox centres for rechargeable batteries , 2014, Nature Communications.

[18]  Haoshen Zhou,et al.  Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device , 2013, Nature Communications.

[19]  Dongsheng Lu,et al.  Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries , 2010 .

[20]  Jun Chen,et al.  All Organic Sodium‐Ion Batteries with Na 4 C 8 H 2 O 6 , 2014 .

[21]  Yunhong Zhou,et al.  Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. , 2009, Chemical communications.

[22]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[23]  T. Jow,et al.  The Role of Conductive Polymers in Alkali‐Metal Secondary Electrodes , 1987 .

[24]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[25]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[26]  M. Armand,et al.  Building better batteries , 2008, Nature.

[27]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[28]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[29]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[32]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[33]  Jiwen Feng,et al.  A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode , 2013, Scientific Reports.

[34]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[35]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[36]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[37]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.